phifiow: A Differentiable PDE Solving Framework for
Deep Learning via Physical Simulations

Philipp Holl Vladlen Koltun
Technical University of Munich Intel Labs
philipp.holl@tum.de vladlen.koltun@intel.com
Kiwon Um Nils Thuerey
LTCI, Telecom Paris, IP Paris Technical University of Munich
kiwon.um@telecom-paris.fr nils.thuerey@tum.de

1 Introduction

Understanding physical environments is a key requirement for machine learning applications such as
autonomous agents and robots [8, [1]. It is typically of vital importance to not only understand the
unperturbed physical behavior but also anticipate how the environment reacts to an agent interacting
with it [15}6]]. We consider partial differential equations (PDEs) as the most fundamental description
of physical systems. The language of PDEs is general enough to describe every physical theory, from
quantum mechanics and general relativity to turbulent flows [[14]. Existing machine learning methods
that deal with agents learning to interact with their environments have often focused on reinforcement
learning [[L1} 5], but for high-dimensional environments, the computational cost of exploring the state
space puts severe limits on the number of interaction parameters with which the agent can influence
the physical system [9].

Meanwhile, progress has been made in utilizing differentiable solvers to find solutions to high-
dimensional optimization problems [[15, 4} [13]]. Yet existing methods are still computationally
expensive and thus limited to short time frames. We combine differentiable physics with deep
learning to represent solution manifolds rather than computing single solutions via optimization. In
this way, trained models can interact with a physical environment using a large number of interaction
parameters, and inference times are orders of magnitude faster than with classic optimization algo-
rithms. Here the use of differentiable physics is key for a robust learning of the complex spaces of
behavior encoded by the model PDEs.

In this context, we present phiflow (https://github.com/tum-pbs/PhiFlow), a fully differen-
tiable Eulerian PDE framework that provides operators and solvers for a large class of PDEs with
analytic gradients. By fully integrating the numerical solver into the training process, neural networks
(NNs) can, e.g., learn to reduce numerical errors of PDE solvers, and to optimally control a physical
system given an initial state and a target state. We show the capabilities of phiflow with a wide range
of correction and control tasks for various advection-diffusion type PDEs, and demonstrate that long
time frames can be handled via a specialized architecture and evaluation scheme that separates the
learning of physical behavior for different time scales.

2 Differentiable PDE solvers

Let u(x, t) be described by a PDE that can be explicitly solved forward in time, i.e. time and space
derivatives do not mix. The PDE can then be written as

ou ou 0%*u
— =P (u,—,=—,...,yt 1
at (“ oz 92 Y)> M
where P models the physical behavior of the system and y(t) denotes any external factors that can
influence the system. A classic solver can move the system forward in time via Euler steps:

u(t;y1) = Solver[u(t;), y(t;)] = w(t;) + At - P (u(ty), ..., y(t;)) 2)

Workshop on Differentiable Vision, Graphics, and Physics in Machine Learning at NeurIPS 2020.

https://github.com/tum-pbs/PhiFlow

The square brackets indicate that Solver is a functional rather than a function, i.e. it takes full fields
as input. Each step moves the system forward by a time increment A¢. Repeated execution produces
a trajectory u(t) that is a solution to the PDE.

When discretizing this formulation for time advancement directly it is not well-suited to solve op-
timization problems, since gradients can only be approximated by finite differencing in a regular
forward solver. For high-dimensional or continuous systems, this method becomes computationally
expensive because a full trajectory needs to be computed for each optimizable parameter. Differen-
tiable solvers resolve this issue by solving the adjoint problem [[12,[10] via analytic derivatives. The
adjoint problem computes the same mathematical expressions while working with lower-dimensional
vectors. A differentiable solver can efficiently compute the derivatives with respect to any of its
inputs, i.e. Ou(t;+1)/0u(t;) and Ou(t;+1)/0y(t;). This allows for gradient-based optimization of
inputs or control parameters of the simulation over an arbitrary number of time steps. The adjoint
method is also used by most machine learning frameworks, where it is more commonly known as
reverse mode differentiation 16} [3]].

We make use of this analogy to realize phiflow, a differentiable PDE solver as a set of mathematical
operations within a deep learning framework. We focus on Eulerian rather than Lagrangian methods
since they are widely used for a large class of PDEs [[14]. All solver operations are implemented
in a differentiable manner, i.e. the automatic differentiation tools can chain the derivatives of these
operations with built-in machine learning operations to build analytic derivatives for any combination
of operations, thus enabling end-to-end training. This toolkit of operations enables the solver to
handle a large class of PDEs, including the incompressible Navier-Stokes equations.

3 Learning solver interactions

Assuming the physical behavior P is described by a PDE as in Eq. (I)), we add a force term F'(t),
which can be seen as a ”correction” or “control” that allows the model to interact with the system:

ou (ou 0*u
u,

E:,P aiw,@,...

While the evolution of the complete state u is determined by the above equation, we allow some
parts of w to be hidden for the forcing. This restriction reflects the fact that it is often not possible to
observe the full state of a physical system. When considering a cloud of smoke, for example, the
smoke density might be observable while the velocity field cannot be seen directly. Mathematically,
we model this restriction by decomposing u into an observable part o and a hidden part h with
u = o(u) ® h(u). Here, ® denotes the tensor product, adding all components of the states. The
hidden part can include spatial regions of some fields as well as entire fields.

) +F(t) 3)

Using the above notation, we define the control task as follows. An initial observable state oy of
the PDE as well as a target state o* are given. We are interested in a reconstructed trajectory u” (t)
that matches these states at o and i, i.e. o = o(u" (tp)), 0" = o(u" (L)), and requires the least
amount of effort over the whole time span. I.e., we aim for minimizing the forces to be applied in
terms of their magnitude with:

Lefu(t)] = / ()2 di @

to

Taking discrete time steps At, the reconstructed trajectory
u” is a sequence of n = (t, —tg)/At states. This problem
definition is portrayed in Fig.|l} An initial observation og
and target observation o, are given (a). The goal is to
reconstruct a trajectory u” that moves from og to o, in
the state space and requires as little force as possible, as
shown in (b). The grey lines represent the unperturbed
evolution of the physical system. The amount of applied Hidden state h
force corresponds to how far the trajectory deviates from

the natural evolution in this picture. Figure 1: Possible trajectories.

(a) Task (b) Trajectories

~
B

Observation
Observation
s
%

e o e e e e e

~
S

\4

When an observable dimension cannot be controlled directly, there may not exist any trajectory w(t)
that matches both oy and o*. This can stem from either physical constraints or numerical limitations.

In these cases, we settle for an approximation of o*. To measure the quality of the approximation of
the target, we define an observation loss L7,. The form of this loss can be chosen to fit the problem.
For our experiments we use the filtered Lo distance between target and reconstruction:

L(u(ts)) = |B.(0") — By (o(u(t.))) | (5)

where B,. denotes a spatial blur function with a fixed, problem-dependent radius > 0. We combine
Eqs.[dand[5]into the objective loss function

Llu(®)] = a- Lp[u(t)] + 8- Lg(u(t.)), (6)

with a, 6 > 0. Since our solver is differentiable, L can be used directly to optimize a machine
learning model such as a neural network that models u” (t), 0., t — F'(t) with weights w. We call
this network the control force estimator (CFE).

For a sequence of n frames, L{w(t)] depends on all n states of the trajectory w(t). Thus, for recurrent
end-to-end training, n linked copies of the network need to be chained together. When inferring
the force, this results in a CFE chain, shown in Fig. |ZL that alternates between network and solver
execution. When using a CFE chain, the complete sequence needs to be run forward and backward
for each optimization step of the model. This is not only slow, it also means that gradients are passed
through a potentially long chain of highly non-linear simulation steps. When the reconstruction u"
is close to an optimal trajectory, this is not a problem since the gradients Au" are small and the
operations executed by the solver are differentiable by construction. The solver can therefore be
locally approximated by a first-order polynomial and the gradients can be safely backpropagated.
For large Au", such as at the beginning of training, this approximation breaks down, causing the
gradients to become highly unstable while passing through the chain. In some cases below, we
employ a second model, which predicts the observable state o” ((¢; +t;)/2) given two observations.
We refer to this model as the observation predictor (OP) [7]].

Note that while some existing approaches rely on a continuous time formulation, e.g. for incorporating
ODEs [3]], we instead make use of a given time discretziation with a chosen temporal step size. While
this requires storing the intermediate states of the simulated system, it allows for using numerical
methods that are suitable to handle the specifics of a PDE under consideration. E.g., tailored time
stepping schemes or specialized and efficient solvers can be integrated into the learning process in
this way. E.g., we make use of these capabilities for the pressure calculation within a Navier-Stokes
solver.

As this workshop paper can only provide a very brief summary of the different phiflow applications,
the de-anonmyized version is this paper will refer to the phiflow source code and corresponding full
papers.

4 Results

Here, we focus on phiflow applications in terms of two-dimensional fluid dynamic problems, which
are highly challenging due to the complexities on the governing Navier-Stokes equations [2]] for the
velocity field v,

P(v,Vv) = —v - Vo + Vv + Vp, (7)

(a) Forward pass

(b) Backward pass I_l

criCacioii IR ;- adiini] su |
(c) Weight update
| - -

to ty th-1 tn

Figure 2: A chained force prediction network: (a) The forward pass reconstructs a trajectory by
alternating between force estimation and solver execution. (b) For backpropagation, the adjoint
problem is computed. (c) Weight updates are accumulated and applied to the model.

L4

Figure 3: Example reconstructed trajectory from (a) the natural flow test set and (b) the shape test set.
The initial state is shown on the far left, the target state o* is shown on the right. The optimization
goal for the NN is to reach the target state given the constraints of the physical model with forces for
a wide range of randomized source and target states.

Table 1: A comparison of methods in terms of final cost for (a) a natural flow setup and (b) shape
transitions from Fig. [3] The initial distribution is sampled randomly and evolved to the target state.

Execution Loss a)Force L a)Obs. L), b)Force Lr b) Obs. L}
Regular Supervised 243 £ 11 1.53 £0.23 n/a n/a
Regular phiflow 226 +t1.1 0.64 £+ 0.08 89 +6 0.331 +£0.134
Refined phiflow 11.74+0.6 0.88 £0.11 75 +4 0.126 + 0.010

subject to the hard constraints V-v = 0 and V x p = 0, where p denotes pressure and v the viscosity.
In addition, we consider a passive density p which moves with the fluid via 9p/9t = —v - Vp. We
set v to be hidden and p to be observable and allow forces to be applied to all of v.

Example sequences for the control task on 128 x 128 domains are shown in Fig.[8|and a quantitative
evaluation, averaged over 100 examples, is given in Tab.[T} While all divide-and-conquer methods
manage to approximate the target state well, there are considerable differences in the amount of
force applied. The supervised technique, denoted as regular, exerts significantly more force than the
differentiable solver based methods, resulting in jittering reconstructions. A prediction refinement
scheme (denoted as refined) re-evaluates predictions over the course of a sequence. This version
produces the smoothest transitions, converging to about half the loss of the regular, non-refined
variant. For comparison, we run a classic optimization with hierarchical shooting that computes
solutions for single cases, and find that it requires 1500 iterations to compute a control function that
our trained model infers almost instantly. In the accompanying publications, we also demonstrate
that more indirect forms of control of systems such as a Navier-Stokes environments are possible.

Additionally, combining differentiable PDE solvers and deep learning can be leveraged to reduce
numerical errors, by omitting the OP network, and prediciton a correction for each step of a sequence
via a CFE network. This is demonstrated for a 3D case of incompressible unsteady wake flow
inE} While a traditional, supervised version fares poorly and becomes unstable (not shown), the
SOL;¢ version (trained with 16 steps of differentiable physics) achieves stable rollouts for several
hundred time steps and successfully corrects the numerical inaccuracies of the coarse discretization.
It improves the numerical accuracy of the source (SRC) simulation by more than 22% across a wide
range of configurations. This case also highlights the gains in performance that can be achieved with
our method: while the deep learning-based hybrid solver with SOL14 took 13.3s on average for 100
time steps, a CPU-based reference simulation required 913.2s. A speed-up of more than 68 x.

5 Conclusions

We have introduced the phiflow framework with a summary of selected results. They show that
deep learning models in conjunction with a differentiable physics solver can successfully predict
the behavior of complex physical models and learn to control and correct them. We believe that
learning differentiable physics has significant potential to provide physical intuition for a wide range
of systems that understand and interact with the real world.

(a) Simulation
Only

A

MAE w.rt. reference: 0.167

(b) Simulation
With Learned
Correction

MAE w.rt. reference: 0.130

=140
(c) Reference
Simulation

111
di

Figure 4: A 3D fluid problem, shown in terms of vorticity. From top to bottom: a) regular simulation,
b) reference, c) regular simulation with learned corrector.

References

[1] Pulkit Agrawal, Ashvin V Nair, Pieter Abbeel, Jitendra Malik, and Sergey Levine. Learning to
poke by poking: Experiential learning of intuitive physics. In Advances in Neural Information
Processing Systems, 2016.

[2] G. K. Batchelor. An Introduction to Fluid Dynamics. Cambridge University Press, 1967.

[3] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In Advances in Neural Information Processing Systems, 2018.

[4] Filipe de Avila Belbute-Peres, Kevin Smith, Kelsey Allen, Josh Tenenbaum, and J Zico Kolter.
End-to-end differentiable physics for learning and control. In Advances in Neural Information
Processing Systems, 2018.

[5] Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsupervised learning for physical in-
teraction through video prediction. In Advances in Neural Information Processing Systems,
2016.

[6] Nick Haber, Damian Mrowca, Li Fei-Fei, and Daniel LK Yamins. Learning to play with
intrinsically-motivated self-aware agents. arXiv:1802.07442, 2018.

[7] Philipp Holl, Vladlen Koltun, and Nils Thuerey. Learning to control pdes with differentiable
physics. ICLR, 2020.

[8] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A
survey. Journal of Artificial Intelligence Research, 4:237-285, 1996.

[9] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning.
arXiv:1509.02971, 2015.

[10] Antoine McNamara, Adrien Treuille, Zoran Popovi¢, and Jos Stam. Fluid control using the
adjoint method. ACM Trans. Graph., 23(3), 2004.

[11] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lilli-
crap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep
reinforcement learning. In ICML, 2016.

[12] Lev Semenovich Pontryagin. Mathematical Theory of Optimal Processes. John Wiley, 1962.

[13] Connor Schenck and Dieter Fox. SPNets: Differentiable fluid dynamics for deep neural
networks. In Conference on Robot Learning, 2018.

[14] Gordon D Smith. Numerical Solution of Partial Differential Equations: Finite Difference
Methods. Oxford University Press, 1985.

[15] Marc Toussaint, Kelsey Allen, Kevin Smith, and Joshua B Tenenbaum. Differentiable physics
and stable modes for tool-use and manipulation planning. In Robotics: Science and Systems,
2018.

[16] Paul J Werbos. Backwards differentiation in AD and neural nets: Past links and new opportuni-
ties. In Automatic Differentiation: Applications, Theory, and Implementations, pages 15-34.
Springer, 2006.

	Introduction
	Differentiable PDE solvers
	Learning solver interactions
	Results
	Conclusions

