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Abstract— Commonly used metrics for motion prediction
do not correlate well with a self-driving vehicle’s system-
level performance. The most common metrics are average
displacement error (ADE) and final displacement error (FDE),
which omit many features, making them poor self-driving per-
formance indicators. As both high-fidelity simulations and track
testing can be resource-intensive, the use of prediction metrics
better correlated with full-system behavior allows for swifter
iteration cycles. We propose a framework for inventing and
evaluating component-level metrics which are better correlated
with system-level outcomes.

I. INTRODUCTION

The task of detecting and predicting actors in a scene is an
important part of most self-driving systems. Most approaches
attempt this by training machine-learned models to predict
trajectories or occupancy maps from sensor inputs. Building
upon past object detection and tracking solutions, models
are usually trained on variants of L2 distance or cross-
entropy loss, and evaluated with metrics such as average
displacement error (ADE), final displacement error (FDE),
and negative log likelihood (NLL).

When applied to self-driving, these have shortcomings.
Consider Figure 1, which shows two scenarios with identical
displacement error, however Fig. 1b is more critical, because
the self-driving vehicle fails to anticipate an object entering
its path. As a result, Rhinehart et al. [1] are able to show
that two models which perform similarly on likelihood (R2P2
and PRECOG) have drastically different performance at the
system level, in terms of collisions.

Gauging a model’s impact on system-level behavior, there-
fore, requires simulation and track testing, both of which
are expensive and require the presence of a fully-capable
self-driving software stack. How shall we do a better job
of evaluating perception/prediction at the component-level,
independent of the overall system into which it is integrated?

II. EXISTING MOTION PREDICTION METRICS

The metrics used for evaluating motion predictions today
exhibit one or more flaws:

• No account of missed or false positive detections.
• No account of errors in shape or orientation.
• Only consider a single instant of time, or an average

over all times.
• No disambiguation of which errors are relevant for

driving (as in Fig. 1).
The most widely used metrics, ADE and FDE, were

popularized by the TrajNet benchmark [2], [3] and are now
used in many other benchmarks.
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(a) The prediction (blue) obstructs the ego-vehicle but ground-truth
(orange) does not. This would likely be a ride comfort violation

since the ego-vehicle would brake needlessly.
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(b) The ground-truth (orange) obstructs the ego-vehicle but the
prediction (blue) does not. This case is concerning because it means

the self-driving system does not foresee the need to brake.

Fig. 1: Two predictions with identical displacement error but
very different system-level outcomes.

The nuScenes Prediction Challenge [4] and Argoverse Mo-
tion Forecasting Challenge [5] use the minADE variant, also
referred to as “oracle error” [6], which takes the minimum
error over the top k trajectories for a preset k. This incurs no
penalty for situations such as Fig. 1a, and must be considered
alongside regular ADE or FDE for a complete picture.

The Lyft Motion Prediction Competition [7] and other
works [1], [8], [9] output a 2D probability distribution in
the state space, and so are able to replace ADE with NLL.

All of these metrics carry common disadvantages.
• They only measure accuracy of a single point on an

object, and do not account for orientation, shape, or
relevance to the ego-vehicle.

• They present multiple objectives with no view as to how
to trade them off against each other.

• They require ground-truth association (see below).
These benchmarks only evaluate motion prediction, rather

than the joint tasks of detection, tracking, and prediction.
Thus, users start with a perfect object track, and the label
for each object is known. In the real self-driving task,



F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3

t = 0 t = 1 t = 2 t = 3

A
A

A
G G G G

A

Fig. 2: At t = 0, a fixed ego-vehicle trajectory is shown as a sequence of its future footprints, F1, F2, and F3. At t = 1,
the ego-vehicle occupies F1. At t = 2, it occupies F2 and overlaps A’s space. It cannot reach F3 and encounter G at t = 3

(hence shown faded) since it must re-plan to stop for A, so A blocks G along this specific ego-vehicle trajectory.

we require ground-truth association algorithms: since the
metric is defined w.r.t. a pair of actors, each predicted
actor requires a ground-truth match. False positive and false
negative detections are ignored and a prediction method can
“cheat” if it only detects objects which are easier to predict
(e.g., only near-range objects). An engineer must look at both
prediction metrics and detection metrics and decide how to
trade them off against each other. This is a major drawback.

III. TOWARD A BETTER PREDICTION METRIC

We have sought to design a motion prediction metric
which would better predict self-driving performance, and
have gained some insights along the way.

A. How to Design a Better Metric?

To design component-level metrics which provide better
signal of self-driving performance, we should ask ourselves,
“What is the function of this component toward the driving
problem, specifically?” Then we should design a metric
which measures that function directly. Since there are many
dimensions of system-level behavior (safety, ride comfort,
reaction time, progress toward destination, etc.), we may well
need to design separate metrics for each of these concerns.

The key idea: A key function of predictions is to “block”
the self-driving vehicle from colliding with a real-world
object. However, we do not wish for predictions to block
free space. This concept is illustrated by Fig. 2. To measure
this function, we:

1) Generate a set of ego-vehicle trajectories to approxi-
mate the full set of dynamically feasible maneuvers.

2) For each ego-vehicle trajectory,
a) Compute the likelihood that any reachable ob-

jects along that trajectory are not “blocked” by
predictions. (safety-related)

b) Compute the likelihood that any reachable free
space along that trajectory is “blocked” by pre-
dictions. (comfort-related)

3) Marginalize across all trajectories.

B. Meta-Metrics: How to Evaluate a Metric?

Now that we have designed a metric from the self-driving
perspective, we seek evidence that this metric corresponds
to system-level outcomes better than ADE or FDE.

Computing a standard correlation coefficient has not been
particularly useful here. This is because the data do not have
a simple functional relationship; system-level outcomes are

determined by many factors. Consider a system-level metric
like “unnecessary braking”. The level of braking used to
avoid an obstacle does not just depend on the obstacle’s
prediction, but also on the configuration of the scene, road
geometry, vehicle dynamics, and so on. We hope that this
variable will show some kind of co-dependence with our
new metric, but we do not expect them to vary linearly or
monotonically with respect to each other.

The key idea: Start with a dataset of known prediction
failures which lead to known system-level failures. If we
have such failures, mixed in with a larger dataset of nominal
driving, how quickly could an engineer discover these issues
when looking through the data?

Say we establish a dataset of safety-related failures known
to be caused by prediction, where the self-driving vehicle is
≤ 2 meters from another object. These are mixed in with a
larger dataset of nominal driving (which may contain other
types of failures). Then, we rank all actors by our candidate
“prediction safety” metric. We hope to see that the actors
involved in the safety failures are ranked highly relative to
all other instances. One way to quantify this would be,

Signal-to-Noise Ratio (SNR): Given this ordering
of actors across all simulations, what fraction of
the top N actors correspond to the known safety
concerns?

If a metric performs well on this stat, then an engineer
can use this metric to efficiently disambiguate the prediction
errors that impact driving performance from those that don’t.

IV. CONCLUSION

In this paper we have surveyed the field of motion predic-
tion metrics and outlined why none of them are expected to
correlate well with system-level outcomes. We then provide
a high-level outline of a metric approach better suited for
self-driving, as well as a process for how to evaluate such
metrics in a quantitative way.
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