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Abstract

Recent work has made significant progress in learning

object meshes with weak supervision. Soft Rasterization

methods have achieved accurate 3D reconstruction from

2D images with viewpoint supervision only. In this work,

we further reduce the labeling effort by allowing such 3D

reconstruction methods leverage unlabeled images. In or-

der to obtain the viewpoints for these unlabeled images, we

propose to use a Siamese network that takes two images

as input and outputs whether they correspond to the same

viewpoint. During training, we minimize the cross entropy

loss to maximize the probability of predicting whether a pair

of images belong to the same viewpoint or not. To get the

viewpoint of a new image, we compare it against different

viewpoints obtained from the training samples and select

the viewpoint with the highest matching probability. We

finally label the unlabeled images with the most confident

predicted viewpoint and train a deep network that has a dif-

ferentiable rasterization layer. Our experiments show that

even labeling only two objects yields significant improve-

ment in IoU for ShapeNet when leveraging unlabeled ex-

amples. Code is available at https://github.com/

IssamLaradji/SSR.

1. Introduction

Acquiring 3D representations of objects is key in many

application domains. For example, these representations

can be used in autonomous driving, robotics, remote sens-

ing, and medical treatment [8, 18]. They can also be used

to create digital twins of dynamic scenes for deep analy-

sis [13], and to synthesize novel views and scenes as effi-

cient ways to augment datasets [26]. Manually modelling

3D objects requires a significant amount of human effort.

Fortunately, we can reduce that effort using models that

combine deep learning and differentiable renderers to train

models on 2D images of an object and generate a 3D repre-

sentation of that object [27].

Over the last years, the research community has pro-

posed multiple methods to learn to perform single-view

2D image to 3D reconstruction using either viewpoints,

voxels, point-clouds, or silhouttes [3, 11, 12, 38]. How-

ever, they assume that the dataset is fully labeled and they

do not leverage unlabeled examples which are available

in abundance. Such additional data could potentially pro-

vide strong signal for the model to boost its 3D recon-

struction performance. Although work in this area is still

scarce [25, 33, 34], in other areas like classification and

semantic segmentation using unlabeled data is a common

practice and is proven to work with techniques based on

semi- and self-supervision [6, 9, 17, 28, 35, 36, 40].

Semi-supervised methods for single-view 2D image

to 3D reconstruction with viewpoint supervision remain

largely unexplored. A viewpoint represents the distance,

elevation, and azimuth from a set vantage point as shown in

Figure 2. The most relevant work is [25] which addresses

this task with 3D supervision. Unfortunately, 3D supervi-

sion is costly to acquire and it often requires 3D modeling

expertise for creating the CAD models of different objects,

which could be prohibitive in many cases. Viewpoint super-

vision on the other hand is easier to acquire. For instance, it

is possible to obtain viewpoints from well-calibrated cam-

eras [1, 31]. However, requiring calibration makes it dif-

ficult to acquire labeled training data. In other cases, it is

possible to train a generic viewpoint inference model [30]

that could be used out of the box to get viewpoint estimates

from images in the wild. The advantage of these scenarios

is that they do not need 3D expertise in the process of learn-

ing to construct 3D meshes. Although viewpoints are much

easier to acquire than 3D models of an object, their collec-

tion is not straightforward for objects in specific domains.

In this paper, we address the problem of 3D reconstruc-

tion from a single 2D image without 3D supervision. We
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Figure 1. SSR consists of two main components: SiamVP and SoftRas (Soft Renderer in the picture). The SiamVP learns whether two

images have the same viewpoint whereas SoftRas learns to project the input image into a silhouette based on a selected viewpoint.

propose SSR, a semi-supervised learning algorithm to lever-

age unlabeled data and reduce the viewpoint annotation

costs such as camera calibration or human expertise. In

order to approximate viewpoints from unlabeled data we

propose SiamVP, a Siamese network [10] that is trained to

take two images with known viewpoint as input and out-

puts the probability that those images correspond to the

same viewpoint. To approximate the viewpoints of unla-

beled images, we use SiamVP to compare them against

other training images of the same class with known view-

points. We finally assign the most confident predicted view-

points to the unlabeled images and train the soft rasterizer

on them. In addition, we also include augmentation to our

training of SiamVP. Two images of matching viewpoints

will still match when they undergo the same affine trans-

formation such as rotation, scale and translation. We em-

pirically show that SSR achieves significant improvement

in IoU for ShapeNet [4] when leveraging unlabeled sam-

ples even when only two labeled objects are available. In an

ablation study, we empirically show the effectiveness of the

proposed data augmentation based on rotations for SiamVP.

The contributions of this work can be summarized as fol-

lows:

• We establish a novel framework that leverages unla-

beled samples for learning to construct 3D meshes

from 2D images with viewpoint supervision.

• We show that using augmentations can highly stabi-

lize the training of SiamVP and achieve more accurate

viewpoint predictions.

• We show that SSR provides a consistent boost of per-

formance over SoftRas for different amounts of la-

beled data with respect to IoU on ShapeNet.

2. Related Work

This work intersects with the topics of Reconstruction

with 3D supervision, Reconstruction with Viewpoint Super-

vision, and Semi- and Self-Supervised Learning which we

will discuss in detail in the following paragraphs.

Reconstruction with 3D supervision Many deep learn-

ing based 3D shape reconstruction methods in the liter-

ature require the 3D model ground truth to be observed

during training [11, 14, 15, 39]. Girdhar et al. [14] pro-

pose to learn a joint embedding for both 3D shapes and

2D images with full supervision. Likewise, methods such

as Pixel2Mesh [39] and Mesh R-CNN [15] are trained to

reconstruct mesh vertices by minimizing the error with re-

spect to the ground truth 3D model. Methods such as O-

Net [29] predict if randomly sampled 3D points are inside

or outside the 3D models instead of directly approximating

their vertices. These methods obtain high reconstruction ac-

curacy. Unfortunately, the cost of acquiring 3D ground truth

annotations is high, which motivates research for alternative

approaches with weaker supervision such as 2D images and

viewpoints.

Reconstruction with Viewpoint Supervision More re-

cently, some works avoid 3D supervision by taking advan-

tage of differentiable renderers [7, 21, 27] with either mul-

tiple views, or known ground truth camera poses. Yan et al.

[41] leverage perspective transformations and the ground

truth viewpoints in order to recover the 3D objects corre-

sponding to the 2D images without 3D ground truth infor-

mation. Similarly, Gwak et al. [19] leverage 2D perspective

projections while constraining the reconstructed 3D shapes

to a manifold of 3D unlabeled shapes of real-world objects.
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Figure 2. Illustration of the viewpoint coordinate system. The az-

imuth is the horizontal angle between the camera and the of the

object. Elevation is the angle with the horizontal plane. Distance

is the euclidean distance between the camera and the the object.

Arsalan Soltani et al. [2] proposed to remove the viewpoint

supervision by introducing depth maps and learning a gen-

erative model over 2D projections and depth maps, thus

requiring both types of input to recover 3D models at test

time. Tulsiani et al. [37] introduce a consistency loss that,

given two images of an object instance with two different

poses, enforces that the shape predicted for one pose is con-

sistent with the depth/mask observation of the second im-

age. Although these works reduce the need for 3D annota-

tions, they still require full supervision with a weaker form

of label such as viewpoints. In this work, we propose to

automatically approximate viewpoints from unlabeled data

thus reducing the amount of required annotations.

Semi- and Self-Supervised Learning Leveraging unla-

beled data for 3D reconstruction is largely unexplored. Liao

et al. [25] proposed a semi-supervised consistency loss term

between 2D shapes and 3D objects. However, they still re-

quire 3D supervision during training. Likewise, Piao et al.

[32] leveraged generative adversarial networks (GAN) [16]

for semi-supervised 3D facial modelling with limited 3D

supervision. In order to remove 3D supervision, Li et al.

[23] proposed a self-supervised approach that leveraged se-

mantic knowledge between object parts. Thus, their method

cannot be applied on completely unlabeled data where part-

annotations are not present like the problem we study in this

work.

3. Methodology

In this paper we propose SSR, a framework for semi-

supervised 3D object reconstruction from 2D images. In or-

der to reduce the amount viewpoint supervision, we propose

to train a Siamese network (SiamVP) to infer the viewpoint

for images for which the viewpoint is unknown. SiamVP

takes two images as input and identifies whether they are

acquired from the same viewpoint (Figure 3). This network

is then used to predict viewpoint pseudo labels for the un-

labeled set by comparing them with images with a known

viewpoint. These images and the inferred viewpoints are

used to train a soft rasterizer network (Figure 1). In the next

sections we describe the training data, the pipeline that in-

volves optimizing the soft rasterizer network, the Siamese

viewpoint predictor and the training and validation proce-

dure.

3.1. Training Data

We consider the standard semi-supervised learning set-

ting [5], where there is a set of labeled images XL whose

labels are the viewpoints and a set of unlabeled images XU

with unknown viewpoint. We assume that the same objects

can appear in multiple images under different viewpoints

both in XL and XU and that we know the sets of images

that correspond to each object. For each image we have the

foreground mask for the object of interest, in some cases

like in ShapeNet the input image is also considered the fore-

ground mask. These assumptions are common for this prob-

lem setup [24, 37].

3.2. Training Pipeline

As in Figure 1, training consists of optimizing both

SiamVP and SoftRas. We describe each of the two com-

ponents in the following sections.

SoftRas. We train a model for 2D to 3D reconstruction

using the procedure described by Liu et al. [27]. First, a 2D

image Is is provided as input to the SoftRas model. The

model consists of an encoder and a decoder and outputs a

3D mesh M composed of vertices and faces. That 3D repre-

sentation is projected into a silhoutte Îs with the viewpoint

associated with that image using a soft rasterizer. Our loss

consists of the following two terms: Ls + Lg . The Ls term

corresponds to the silhouette loss:

Ls = 1−
||Îs ∗ Is||1

||Îs + Is − Îs ∗ Is||1
, (1)

where * and + are the element-wise product and sum oper-

ators, respectively. Lg is the geometric loss that regularizes

the Laplacian of the shape. Note that this model is amenable

to any encoder-decoder architectures. Its key component is

the soft rasterizer function that allows the gradients to flow

from the IoU loss computed in Eq. 1 to the parameters of

the encoder and decoder.

SiamVP. At each iteration SiamVP takes pairs of images,

where some of them correspond to the same viewpoint and



SiamVP

Labeled Viewpoints

Cross-Entropy 
Loss

SiamVP

Unlabeled Viewpoint

Labeled Viewpoints

Training Inference

Figure 3. Illustration of SiamVP. During training (left) SiamVP is optimized to infer whether two images correspond to the same viewpoint.

During semi-supervised training (right), SiamVP is used to infer the viewpoint of new images with unkown viewpoint by matching their

viewpoint with other images of known viewpoint.

others do not (Figure 3). Pairs of images of the same view-

point are sampled from different objects to avoid the model

optimizing a trivial loss. Since most pairs of images have

different viewpoints, we sample a balanced set of pairs from

images with same and different viewpoints and also mine

hard negatives and positives to ensure a stable loss opti-

mization. Hard negatives are those pairs that have dissim-

ilar viewpoints and have the highest predicted probability

of being the same, whereas hard positives are those pairs

that have the same viewpoints but have the lowest predicted

probability of being the same. This procedure is also shown

in Step 4 of Algorithm 1.

Thus given two images Ii and Ij and an indicator func-

tion si,j that is 1 when the viewpoint of Ii is the same as the

viewpoint of Ij and 0 otherwise, we minimize the following

loss function:

Lv(Ii,Ij)
= −si,j log(Pv)− (1− si,j) log(1− Pv). (2)

In the case where only few examples have been labeled,

it is important to augment the dataset to avoid overfitting.

Between pairs of images with same viewpoint, we also aug-

ment the pair with identical random rotation between 0 and

360 degrees and incorporate their similarity probability into

the loss in Eq. 2.

Pseudo-Labeling. While SiamVP is being trained, we

add the viewpoint labels to the unlabeled set of Nu exam-

ples as in Step 6 of Algorithm 3.2. The ”siam vp” predict

function computes the viewpoint of an unlabeled image as

follows. First, from the labeled set we randomly select an

image from each viewpoint as reference and compare it with

each unlabeled example using SiamVP to get a similarity

matrix S ∈ RNuxNv where Nv is the number of unique

viewpoints we have in the training set. For each row Si we

select the viewpoint vj with the highest probability Sij . We

also compute Ŝ which is the similarity matrix between the

labeled and unlabeled examples after they undergo the same

rotation. Like with S, we also select the viewpoint v̂j with

the highest probability Ŝij for each row i. If Sij and Ŝij are

both higher than 0.5 and vj = v̂j then we select vj to be the

label of unlabeled image Ii otherwise we skip labeling the

image. In our experiments, we observe that this approach

tends to label a small portion of the unlabeled set each time

this procedure is executed, and the accuracy between these

predicted viewpoints and the groundtruth is often high.

The Full Cycle. Every z iterations of training SiamVP

and Softras, we execute the pseudo-labeling procedure from

the previous paragraph to get more unlabeled examples la-

beled with viewpoints. In the first cycle where none of the

unlabeled examples have been pseudo labeled, we train Sof-

tRas using its standard procedure. In the subsequent cycles,

each batch that SoftRas receives consists of half labeled ex-

amples, and half pseudo-labeled examples which are trained

collectively using the SoftRas standard loss term which is

shown in Step 3 in Algorithm 3.2.

Inference. At test time, SiamVP is discarded and the

trained SoftRas takes as an input a single unseen 2D im-

age of an object and outputs the 3D mesh of that object

(Figure 3).



Table 1. Number of objects for each of the 13 ShapeNet Categories.

Plane Bench Cabinet Car Chair Display Lamp Speaker Rifle Sofa Table Phone Vessel

4045 1816 1572 7496 6778 1095 2318 1618 2372 3173 8509 1052 1939

Table 2. IoU results for various objects of ShapeNet, where N is the number of labeled examples.

Method N Plane Bench Cabinet Car Chair Display Lamp Speaker Rifle Sofa Table Phone Vessel Mean

MVC [37] 0 0.38 - - 0.48 0.35 - - - - - - - - -

SoftRas 2 0.42 0.24 0.39 0.6 0.26 0.33 0.17 0.38 0.44 0.38 0.17 0.57 0.28 0.36

SSR (ours) 2 0.55 0.44 0.48 0.75 0.37 0.5 0.27 0.45 0.63 0.53 0.27 0.71 0.53 0.50

SoftRas 5 0.43 0.27 0.42 0.64 0.29 0.34 0.19 0.45 0.43 0.47 0.2 0.60 0.42 0.40

SSR (ours) 5 0.59 0.44 0.5 0.75 0.49 0.55 0.33 0.47 0.65 0.66 0.35 0.78 0.56 0.55

SoftRas 20 0.47 0.34 0.53 0.68 0.33 0.44 0.26 0.51 0.52 0.55 0.31 0.67 0.47 0.47

SSR (ours) 20 0.63 0.47 0.65 0.76 0.51 0.57 0.38 0.62 0.66 0.65 0.43 0.78 0.55 0.59

SoftRas All 0.64 0.51 0.71 0.77 0.53 0.62 0.46 0.67 0.68 0.69 0.45 0.79 0.60 0.62

Figure 4. Results Across Pseudo-Labeling Cycles. The left plot depicts the percentage of unlabeled examples that has been pseudo-labeled

by SiamVP. The center plot shows the accuracy of the pseudo labels across epochs. The right plot shows the 3D IoU on the ShapeNet’s

test set.

4. Experiments

We evaluate the effectiveness of SSR for 3D reconstruc-

tion and viewpoint estimation. We first report the perfor-

mance of SSR when trained with different numbers of ex-

amples and compare it with different baselines with differ-

ent amounts of supervision. Then we study the evolution of

SRR’s performance across pseudo-labeling cycles and pro-

vide ablations to determine the influence of using augmen-

tations and metric learning.

4.1. Setup

We experiment on ShapeNet v2 dataset [4] which con-

tains a rich collection of 3D computer-aided design (CAD)

models of different classes of objects. Shapenet is widely

used in recent research works related to 2D/3D data. We fo-

cus on 13 standard categories of ShapeNet which are Plane,

Bench, Cabinet, Car, Chair, Display, Lamp, Speaker, Rifle,

Sofa, Table, Phone, Vessel as they offer enough objects to

build a diversified image dataset and they were previously

used in a similar setup like Liu et al. [27]. The number of

objects in each class is shown in Table 1. We benchmark

with renderings provided by Kato et al. [21], where the 3D

CAD object models were rendered at 24 uniform viewpoints

to 64 × 64 images. We split the dataset into training, valida-

tion and testing sets accounting for 70, 10 and 20 percent of

the whole dataset respectively, following Yan et al. [41]. To

simulate a semi-supervised setup, we further split the train-

ing set by randomly selecting a subset of the data to act as

the labeled set, and the rest acting as unlabeled. We adjust

the number of labeled samples in our experiments to show

the effect of varying degrees of supervision. The splits are

made on a object basis, that is, the different views from the

same 3D model are either all labeled or all unlabeled.

We evaluate the 3D reconstruction accuracy by the 3D

Intersection of Union (3D IoU) between the reconstructed

images from every of the 24 viewpoint and ground truth 3D

voxels of the test objects.



1 # softras: A SoftRas model

2 # siam_vp: A SiamVP model

3 for i in range(max_iter):

4 # Step 1: randomly sample labeled batch

5 images_labeled, viewpoints_labeled = labeled_set.sample()

6

7 # Step 2: randomly sample pseudo-labeled batch

8 images_unlabeled, viewpoints_unlabeled_pseudo = unlabeled_set.sample()

9

10 # Step 3: Compute softras loss from Eq. 1

11 images = torch.cat([images_labeled, images_unlabeled], dim=0)

12 viewpoints = torch.cat([viewpoints_labeled, viewpoints_unlabeled_pseudo], dim=0)

13 loss = compute_softras_loss(softras, images, viewpoints)

14

15 # Step 4: Compute siamvp loss from Eq. 2

16 image_pairs, viewpoint_pairs = get_pairs(images_labeled, viewpoints_labeled)

17 loss = compute_siamvp_loss(siam_vp, image_pairs, viewpoint_pairs)

18

19 # Step 5: optimization step

20 optimizer.zero_grad()

21 loss.backward()

22 optimizer.step()

23

24 # Step 6: every "z" iterations, pseudo-label unlabeled images if

25 # siam_vp's accuracy on the labeled set is 100%

26 if iteration % z == 0 and siam_vp.train_accuracy == 100:

27 for j, image_unlabeled in enumerate(unlabeled_loader):

28 # randomly select a labeled object and get $k$ reference viewpoints

29 k = np.random.choice(len(labeled_set))

30 reference_set = labeled_set.images[k]

31

32 # get the viewpoint that aligns best with the unlabeled image

33 viewpoint, confidence = siam_vp.predict(image_unlabeled, reference_set)

34

35 # pseudo-label image j if the confidence and accuracy are high enough

36 if confidence > 0.8: unlabeled_loader.dataset.label(j, viewpoint)

Algorithm 1: PyTorch-style pseudocode for SSR

4.2. Implementation Details

We use the same structure and hyper-parameters as [27]

for mesh generation. Our network is optimized using Adam

with α = 1 · 10−4, β1 = 0.9 and β2 = 0.999. We used

a batch size of 64 and implemented our pipeline using Py-

Torch by building on the code found here.1 For the SiamVP

architecture, we used the Siamese network defined by Koch

et al. [22] with weights initialized using Kaiming Initializa-

tion [20]. We observed that this network attained better gen-

eralization than if we used the encoder architecture from Liu

et al. [27] which is more optimized towards constructing 3D

meshes. We used a batch size of 32 for SiamVP and op-

timized the network using Adam with learning rate 10−4.

1https://github.com/ShichenLiu/SoftRas

These hyper-parameters were coarsely optimized using the

validation set but better results would be likely achieved

with more tuning on the validation set which would only

strengthen the contributions made by this work. Note that

we use the validation set for early stopping and we report

the test score achieved by the model that achieved the best

result for the validation set in the 1000 epochs of training.

4.3. Experimental Results

Comparison with the baseline We compare the pro-

posed SSR (SoftRas +SiamVP) against SoftRas for the

cases where only few objects have been labeled. We re-

port the results in Table 2. We observe that by labeling

only 2, 5, or 20 ShapeNet objects for each class with view-

points, SSR consistently achieves a significantly better IoU



test score than SoftRas. SSR uses the procedures described

in Section 3 which leverages the unlabeled set by pseudo

labeling it with SiamVP. In Figure 5 we observe that Soft-

Ras tends to overfit on the labeled set and fails to adapt to

new objects. On the other hand, SSR’s reconstructions are

more similar to their original counterpart. This result sug-

gests that SiamVP can accurately predict the viewpoints of

the unlabeled set which can be effectively used by SoftRas.

Comparison with an unsupervised method MVC [37]

is an unsupervised method that can learn camera parameters

from objects given multiple views for each of them. It does

not use any viewpoint labels and it does not use differen-

tiable rendering, thus it is a significantly different approach

for 3D reconstruction than SoftRas. Its score is reported in

Table 2. Although MVC achieved good results considering

that it used no viewpoint labels, SSR makes a significant

improvement with only 2 objects being labeled, especially

for the categories Plane, and Car. Unfortunately, MVC [37]

does not report results for the remaining classes in order to

make further comparison. The results however indicate that

it is worth labeling extra objects and to use SSR to get a

major increase in performance.

Comparison across number of labeled objects We com-

pare the performance achieved from labeling 2, 5, or 20 ob-

jects from the training set in Table 2. We observe that SSR

did not gain statistically significant improvement for classes

like Car, Vessel, and Rifle. Our hypothesis is that many of

the objects look similar in these classes, so labeling few ex-

tra objects might not provide rich information that SoftRas

could use for better 3D reconstruction. On the other hand,

for classes where objects are more diverse like Plane, Chair,

Lamp, and Sofa, SSR achieved big improvement with 5 la-

beled objects than with 2 labeled objects. We also see that

there is a big boost in the mean iou test score as the num-

ber of labeled objects increase, which suggests that SiamVP

can still be effective with more training labels.

Comparison with the upper bound In Table 2 we also

report results for SoftRas trained on the full labeled set. We

observe that the performance gap between it and SSR (with

20 objects labeled) is small for most classes like Plane, Car,

Display, Rifle. Note that 20 objects is a small number com-

pared to the full training set size which are shown in Table 1.

For the Plane class, 20 only makes 0.7% of the total number

of Plane objects in the training set. This result indicates that

for some classes few labels might be sufficient to get good

results while for other classes, like Cabinet and Speaker,

we would need more labels. This observation leads to an

important future direction that could involve active learn-

ing to identify which objects are best to label for maximum

information gain.

Table 3. IoU results for various objects of ShapeNet.

Method Plane Bench Cabinet Car

SSR w/o augmentation 0.45 0.30 0.43 0.64

SSR (ours) 0.55 0.44 0.48 0.75

Comparison with a viewpoint classifier We also con-

ducted an experiment where we trained a viewpoint clas-

sifier using the same encoder as SiamVP that takes as input

ShapeNet images and outputs the viewpoint of the image

from a large list of hypothesis viewpoints. We observed a

severe overfitting of the model on the labeled set and the re-

sults were worse than SoftRas that was trained only on the

labeled set. Therefore, our metric learning approach with

SiamVP is significantly more robust for classifying view-

points than with a viewpoint classifier when the labeled set

is small.

Results Across Pseudo-Labeling Cycles. We investigate

our model’s performance as we grow the number of unla-

beled examples that get incorporated to the training set with

SiamVP’s pseudo labels. Pseudo-labeling cycles occur ev-

ery 2 epochs, where every epoch consists of 200 training it-

erations. In Figure 4 we observe that the first set of labeled

examples induce high accuracy gains on viewpoint predic-

tion. However, as more viewpoints get labeled we observe

some decrease in the viewpoint accuracy. For some shapes

like Car, the accuracy drops from 90% to 88% suggesting

that SiamVP might start to overfit as the training progresses.

On the other hand, we see that the accuracy plateaus

above 80% which indicates that SiamVP is robust to

pseudo-labeling noise. Further, we see that for Plane ob-

jects the ratio of pseudo-labeled samples is almost 100%

whereas for Chair it is 60%, suggesting that for some chair

objects, SiamVP’s predicted viewpoint probability was low.

Note that SiamVP is training alongside SoftRas so at

each pseudo-labeling cycle there is a chance that SiamVP

labels a different set of unlabeled examples. We observed

that this approach resulted in more accurate pseudo-labels

across all object sets.

We also observe that the highest increase in the test IoU

occurs in the first 20 epochs with a slight increase later in

training. As mentioned in the implementation details, in the

rest of the experiments we only report the test IoU at the

end of their respective plot lines which correspond to the

best validation model.

The importance of augmentation. Described in Sec-

tion 3, the goal of augmentation is to help SiamVP gen-

eralize better as there is a limited number of viewpoints in

the labeled set. In Table 3 we compare the results with and

without the augmentation for 4 ShapeNet classes where the

number of labeled objects is 2. We observe that there is
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Figure 5. Qualitative results using only 2 labeled objects. SoftRas collapses to those two shapes mostly whereas, SSR: SiamVP and SoftRas

are better at reconstructing the 2D image.

consistent improvement in the results when augmentation

is added as it helps the model learn the 3D mesh while be-

ing invariant on the viewpoint of the 2D images. Note that

for this approach we only used the rotation augmentation

but other types of augmentation such as scaling, and trans-

lation can be used as well. Another augmentation technique

to investigate is using a pretrained SoftRas to perform pro-

jections under novel viewpoints and use those projections

as input to train a SiamVP.

5. Conclusion

We propose SSR, a semi-supervised soft rasterizer

method that leverages unlabeled examples by using accu-

rate pseudo labels. SSR consists of a viewpoint estimation

component and a soft rasterization component. The view-

point estimation is performed by a Siamese network called

SiamVP that outputs whether two images have the same

viewpoint. SiamVP slowly pseudo-labels images by care-

fully choosing only the most confident viewpoint predic-

tions at each cycle. These viewpoint pseudo-labeling pro-

cedure leads to a signicant boost in the performance of Sof-

tRas for reconstructing single 2D images to their 3D rep-

resentation. Future directions for this work would include

adopting this method for predicting viewpoints for objects

in the wild where the environment is more challenging and

less constrained than the ShapeNet dataset.



References

[1] Arkit, apple developer. In https://developer.apple.com/arkit/,

2018. 1

[2] A. Arsalan Soltani, H. Huang, J. Wu, T. D. Kulkarni, and

J. B. Tenenbaum. Synthesizing 3d shapes via modeling

multi-view depth maps and silhouettes with deep genera-

tive networks. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1511–1519,

2017. 3

[3] T. J. Cashman and A. W. Fitzgibbon. What shape are dol-

phins? building 3d morphable models from 2d images. IEEE

transactions on pattern analysis and machine intelligence,

35(1):232–244, 2012. 1

[4] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan,

Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su,

et al. Shapenet: An information-rich 3d model repository.

arXiv preprint arXiv:1512.03012, 2015. 2, 5

[5] O. Chapelle, B. Scholkopf, and A. Zien. Semi-supervised

learning (chapelle, o. et al., eds.; 2006)[book reviews]. IEEE

Transactions on Neural Networks, 20(3):542–542, 2009. 3

[6] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A sim-

ple framework for contrastive learning of visual represen-

tations. In International conference on machine learning,

pages 1597–1607. PMLR, 2020. 1

[7] W. Chen, J. Gao, H. Ling, E. J. Smith, J. Lehtinen, A. Ja-

cobson, and S. Fidler. Learning to predict 3d objects with

an interpolation-based differentiable renderer. arXiv preprint

arXiv:1908.01210, 2019. 2

[8] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia. Multi-view 3d

object detection network for autonomous driving. In Pro-

ceedings of the IEEE conference on Computer Vision and

Pattern Recognition, pages 1907–1915, 2017. 1

[9] X. Chen, H. Fan, R. Girshick, and K. He. Improved base-

lines with momentum contrastive learning. arXiv preprint

arXiv:2003.04297, 2020. 1

[10] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity

metric discriminatively, with application to face verification.

In 2005 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR’05), volume 1, pages

539–546. IEEE, 2005. 2

[11] C. B. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese. 3d-

r2n2: A unified approach for single and multi-view 3d object

reconstruction. In European conference on computer vision,

pages 628–644. Springer, 2016. 1, 2

[12] J. Delanoy, M. Aubry, P. Isola, A. A. Efros, and A. Bousseau.

3d sketching using multi-view deep volumetric prediction.

Proceedings of the ACM on Computer Graphics and Inter-

active Techniques, 1(1):1–22, 2018. 1

[13] A. El Saddik. Digital twins: The convergence of multimedia

technologies. IEEE multimedia, 25(2):87–92, 2018. 1

[14] R. Girdhar, D. F. Fouhey, M. Rodriguez, and A. Gupta.

Learning a predictable and generative vector representation

for objects. In European Conference on Computer Vision,

pages 484–499. Springer, 2016. 2

[15] G. Gkioxari, J. Malik, and J. Johnson. Mesh r-cnn. In

Proceedings of the IEEE/CVF International Conference on

Computer Vision, pages 9785–9795, 2019. 2

[16] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-

erative adversarial networks. Communications of the ACM,

63(11):139–144, 2020. 3

[17] J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. H. Richemond,
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