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Abstract

Tracking and reconstructing 3D objects from cluttered
scenes are the key components for computer vision, robotics
and autonomous driving systems. While recent progress in
implicit function (e.g., DeepSDF) has shown encouraging
results on high-quality 3D shape reconstruction, it is still
very challenging to generalize to cluttered and partially ob-
servable LiDAR data. In this paper, we propose to leverage
the continuity in video data. We introduce a novel and uni-
fied framework which utilizes a DeepSDF model to simul-
taneously perform object tracking and 3D reconstruction in
the wild. We perform online adaptation with the DeepSDF
model in the video, iteratively improving the shape recon-
struction which leads to improvement on tracking, and vice
versa. We experiment with the Waymo dataset, and show
significant improvements over state-of-the-art methods for
both tracking and shape reconstruction.

1. Introduction

Given a sequence of a LiDAR scans of the object in Fig-
ure 1, we humans can recognize it is a moving “car” even if
the object is presented in a cluttered environment with only
partial point clouds visible in each time step. Beyond rec-
ognizing the object, we are also able to imagine the full 3D
structure of the object and its pose. In a video, by tracking
the object and aggregating the information through time, the
object 3D structure becomes more apparent to us. While 3D
perception is easy for humans, 3D object tracking, pose es-
timation, and shape reconstruction are still very challenging
problems in computer vision, and they are the key compo-
nents for robotics and autonomous driving systems.

Recent development on implicit function has shown a
tremendous success on high-quality 3D shape reconstruc-
tion [3, 10, 12, 1, 8]. Specifically, DeepSDF [12] is pro-
posed to use a deep auto-decoder which takes a shape code
and a coordinate as inputs to predict the signed distance to
the shape surface. By training a category level DeepSDF,
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Figure 1. 3D object tracking and shape reconstruction in the
wild. We propose a novel framework to utilize DeepSDF to per-
form tracking and reconstruction simultaneously. We visualize
5 time steps of tracking and 3 reconstructed shapes out of them.
While our model reconstructs a shape close to an average car with
few point clouds in the beginning. By tracking the object over
time, we obtain better and better shape close to the ground-truth
point clouds, which in return helps the tracking.

it learns the shape prior of the object category. With this
prior, the DeepSDF can be used to reconstruct a new in-
stance by optimizing the shape code via back-propagation.
While DeepSDF has been shown to be very effective with
synthetic data (e.g., ShapeNet [2]) and with dense obser-
vations (e.g., ScanNet [4]), it suffers from reconstruction
with partial point clouds in cluttered scenes. Even with the
learned prior, it either reconstructs close to mean shape or
overfits to the noise given limited observations and the noisy
artifacts around. As shown in the first time step in Figure 1,
the reconstructed shape is very different from the ground-
truth point clouds. With the help of the video, we should be
able to align and aggregate multiple observations over time
for a better reconstruction. For example, the car shape in
the 5th time step is much closer to the ground-truth point
clouds in Figure 1. However, it raises another challenge to
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Figure 2. Overview of our method. After initialization of the shape code, tracking and shape reconstruction are performed iteratively. At
a specific frame, the incoming object point cloud is first aligned to the previous shape, and then the shape is adapted to the aligned point
cloud. Both procedures are based on DeepSDF.

perform tracking and pose estimation of the object across
time.

In this paper, instead of taking object tracking and shape
reconstruction as two separate tasks, we propose to solve
them simultaneously using one single model. We introduce
a novel framework which utilizes DeepSDF for tracking.
When tracking the partial point clouds, we use them to up-
date the shape code for the DeepSDF online, which leads
to better shape reconstruction. With a better shape model,
it improves tracking at the same time. Our framework it-
erates between object tracking and online adaptation along
the video to improve performance for both tasks.

To perform tracking with DeepSDF, we first optimize the
shape code via back-propagation using the given localized
partial point clouds in the initial time step. While the shape
code itself might not give perfect reconstruction, it offers
a shape prior to construct a complete signed distance field
of the object as a template. We then perform object track-
ing via optimizing a differentiable template matching pro-
cess. Specifically, given the current model and point clouds
in a new time step, we apply a 3D transformation on the
partial point clouds (3D translation and rotation) and feed
them to the DeepSDF model to compute their signed dis-
tances. If the 3D transformation is correct, the distance
should be close to zero. We perform optimization via back-
propagation to minimize the absolute distance. Since the
3D transformation operation is differentiable, we can back-
propagate the gradients through the point clouds to adjust
the transformation. Once the object point clouds are local-

ized with the correct pose, we can then use the point clouds
to optimize the shape code for updating the object shape.

We perform our experiments with LiDAR video data
with cluttered scenes in the wild. Our DeepSDF model is
first trained in the ShapeNet [2] dataset to obtain the shape
prior. We then perform online adaptation with the model on
the Waymo [13] dataset. We demonstrate that our method
not only achieves state-of-the-art performance on 3D object
tracking, but also improves shape reconstruction at the same
time.

2. Method
2.1. Overview

We present the overview of our method in figure 2. As
shown at the top of the figure, during the tracking process,
we maintain a dynamic, adaptable object shape which is
represented by the shape code. Since the object pose is
provided at the first frame, we perform a normal shape re-
construction based on DeepSDF as an initialization. At a
specific frame t, given the previous shape and the incom-
ing unaligned object point cloud, we perform joint tracking
and shape adaptation to optimize both object pose and shape
code.

In particular, as shown at the bottom of the figure, an
iterative optimization is performed at frame t. We first align
the point cloud with the previous shape by minimizing the
absolute distance of the point cloud. Then we adapt the
shape to match it with the aligned point cloud by similarly



minimizing the absolute distance of the point cloud.
In the paper, we define a 3D bounding box of the in-

terested object with pose T ∈ SE(3) and size b =
{h,w, l} ∈ R3 (height, width and length). We use
X(T,b) = {x|Tx ≤ b,x ∈ P} to denote the subset
of LiDAR points x of a frame P that are inside the object
bounding box. Since the size b of object is known and fixed,
we omit it for simplicity and use X(T) to denote the posed
object points hereafter.

2.2. Implicit Function for Shape Representation

Vehicles in the wild come with a wide range of shapes
and partial observations as shown in Figure 1, which intro-
duces challenges to the pre-parameterized shape models of
car [6, 9]. Instead, we adopt the non-parametric DeepSDF
for simultaneously tracking and shape reconstruction in this
work.

DeepSDF f is a coordinate-based MLP parameterized
by θ which approximates the SDF. It takes both 3D coordi-
nates x and a learnable per-object shape code z as inputs.
The DeepSDF function can be represented as,

f(x, z; θ) = s, x ∈ R3, z ∈ Rd, s ∈ R, (1)

which encodes a one-to-one mapping between shape code
z and 3D shape, and shape reconstruction for different ob-
jects can be achieved by optimizing the shape code for each
object.

Given a set of surface points X of a 3D shape (a LiDAR
scan) and corresponding SDF values s, we can reconstruct
the shape from X by obtaining the optimal shape code z∗

in the learned shape space via minimizing the SDF loss,

z∗ = argmin
z

∑
x∈X

smooth_l1(f(x, z; θ), s). (2)

Note that we only optimize the shape code z here and we
fix the network parameters θ.

2.3. Joint Tracking and Shape Reconstruction in
the Wild

Different from standalone shape reconstruction where
dense surface points of objects are already well-posed in
the canonical view, joint tracking and shape reconstruction
in the wild requires us to estimate the object pose, making
it far more challenging.

To track an object in 3D is to estimate its pose T ∈
SE(3) with respect to the LiDAR reference frame, as the
size of the object b = {h,w, l} is already provided by the
tracking template. Our joint tracking and shape reconstruc-
tion problem could be cast as

min
T,z

∑
x∈X(T)

smooth_l1(f(x, z; θ), 0). (3)

Here all ground-truth SDF values are 0 as LiDAR points
always come from the surface of an object.

(a) Shape evolution (b) GT

Figure 3. Shape evolution on Waymo. The shapes in (a) are be-
come more and more aligned with ground-truth point clouds in (b)
via online adaptation.

2.4. Iterative Optimization

Directly solving Eq. 3 leads to sub-optimal results in
practice as the pose T and the shape code z are two sets
of variable with different scales and loss surfaces. Instead,
we take an iterative optimization approach as described in
Figure 2 to ease the difficulty of optimization.

During the first step of tracking, the initial object pose
T0 is provided, so the corresponding optimal code z∗0 could
be obtained by,

z∗0 = argmin
z

∑
x∈X0(T0)

smooth_l1(f(x, z; θ), 0)+λ‖z‖22.

(4)
A `2 regularizer is applied for the shape code z to prevent
over-fitting. To perform tracking, we use the optimal shape
code obtained from the last frame as,

T∗t = argmin
T

∑
x∈Xt(T)

smooth_l1(f(x, z∗t−1; θ), 0)

(5)+ φ(Xt(T),

t−1⋃
i=0

Xi(Ti)).

Here φ(X,Y) =
∑

x∈X miny∈Y ‖x − y‖22 is an op-
tional single-side Chamfer distance loss. The Chamfer dis-
tance loss between the object points in current frame and
aggregated object points from previous time steps helps
the pose estimation by capturing finer details of the ob-
ject shape, as reconstructed shapes are tend to be over-
smoothed.

After aligning the point clouds, we perform shape adap-
tation to utilize the observations to improve the shape qual-
ity. Specifically, we align the shape and the historical ob-
servations by minimizing the difference between them.

The shape adaptation is achieved via optimizing the
shape code as,
z∗t = argmin

z

∑
x∈

⋃t−1
i=0 Xi(Ti)

smooth_l1(f(x, z; θ), 0)

(6)
+ λ‖z‖22,



All Easy Medium Hard
Method Adapted frames Succ ↑ Prec ↑ Succ ↑ Prec ↑ Succ ↑ Prec ↑ Succ ↑ Prec ↑
SOTracker [11] — 57.4 64.9 69.4 75.7 53.6 60.7 47.1 56.5
Ours 1 58.7 61.7 67.6 69.7 55.2 57.9 51.4 56.3
Ours 20 59.4 62.7 67.8 70.0 55.8 58.7 53.3 58.4
Ours all 60.0 63.4 68.3 70.4 56.5 59.3 54.0 59.3
Ours w. CD loss all 62.3 65.7 71.5 74.1 58.8 61.8 54.9 59.9

Table 1. Tracking performance on Waymo. ↑(↓) means the performance is better with larger (smaller) values. Our method achieves
results that are comparable with the baseline on the easy subset and outperforms it by a large margin on the hard subset.

All Easy Medium Hard
Method Adapted frames ACD ↓ Rec ↑ ACD ↓ Rec ↑ ACD ↓ Rec ↑ ACD ↓ Rec ↑
SOTracker [11] — 2.81 82.25 2.49 84.51 2.87 82.31 3.09 79.92
Ours 1 2.43 85.39 2.35 86.51 2.71 84.60 2.22 85.06
Ours 20 2.36 85.91 2.33 86.60 2.60 85.42 2.14 85.72
Ours all 2.42 84.64 2.30 84.81 2.64 84.39 2.31 84.72
Ours w. CD loss all 2.50 84.71 2.30 86.40 2.76 83.78 2.44 83.98

Table 2. Reconstruction performance on Waymo. Our method performs better with online adaptation.

3. Experiments
We perform experiments on the Waymo open

dataset [13] to evaluate both object tracking and shape
reconstruction.

3.1. Experimental Settings

Data preparation. For training of the DeepSDF model,
we use 2364 synthetic objects from the “car” category of the
ShapeNet Core [2] dataset. For the supervision, we directly
employ the processed SDF samples provided by DISN [14].

For tracking on Waymo, we follow the protocol in
LiDAR-SOT [11]. The dataset is spilt into easy, medium,
and hard subsets based on the average number of points of
each tracklet.

Evaluation metrics. Since the ground-truth aggregated
points are not complete, we employ Asymmetric Chamfer
Distance (ACD) and Recall defined in SRW [5] to measure
the shape fidelity.

In the paper, we set threshold of Recall t = 0.2. For the
single object tracking task, we adopt Success and Precision
defined in SC3D [7] to evaluate the tracking performance.

3.2. Experimental results

We compare our method with SOTracker, a recent single
3D object tracking method on Waymo. As shown in Ta-
ble 1, our method achieves comparable results on the easy
subset and outperforms baseline by a large margin on the
hard subset. Since the difficulty is determined by the spar-
sity of point clouds, it’s reasonable that shape reconstruc-
tion is more beneficial in the case of more sparse point
clouds. Note that the objective function of SOTracker is
the weighted sum of several terms: ICP term, shape term,
motion consistency term, and motion prior Term. In our ex-
periments on Waymo, we only utilize ICP term and shape
term.

We also evaluate the performance of the shape recon-

struction. Since shapes in SOTracker are represented by ag-
gregated point clouds, metrics including ACD and Recall
are not suitable. We first aggregate point clouds based on
the predicted pose and then exploit our shape model to con-
vert the point clouds to mesh for comparison. As shown
in Table 2, our method outperforms the baseline on every
subset. This experiment demonstrates that joint tracking
and shape reconstruction leads to better performance than
tracking followed by shape reconstruction.

To demonstrate the effectiveness of the online adapta-
tion mechanism, we adapt shape during frames of differ-
ent lengths and compare the performance of tracking and
reconstruction. As shown in Table 1, the tracking perfor-
mance continues to improve as the number of adaptation
frames increases. Similarly, as shown in in Table 2, on-
line adaptation also improves the quality of the shape. Fig-
ure 3 illustrates our shape evolution during tracking process
on Waymo. We also find that as the number of adaptation
increases, the gains for tracking and reconstruction perfor-
mance become less. This suggests that as tracking proceeds,
the pose is more likely to be estimated incorrectly, and adap-
tations at these frames are more likely to be noisy.

In addition, we ablate the Chamfer distance loss (CD
loss, second term in Eq. 5) in Table 1 and Tabel 2 and ob-
serve it plays an important role in improving tracking.

4. Conclusions

In this paper, we present a novel and unified framework
for object tracking and shape reconstruction in the wild. We
propose to leverage the continuity in video data with a shape
model. Specifically, we utilize a DeepSDF model to simul-
taneously perform object tracking and 3D reconstruction.
During tracking process, we adapt shape model based on
new observation to improve the shape quality, which leads
to improvement on tracking, and vice versa. We perform ex-
periments on Waymo, and outperform state-of-the-art meth-
ods by a large margin.
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