
A-SDF: Learning Disentangled Signed Distance Functions
for Articulated Shape Representation

Jiteng Mu1, Weichao Qiu2, Adam Kortylewski2, Alan Yuille2,
Nuno Vasconcelos1, Xiaolong Wang1

1UC San Diego, 2Johns Hopkins University

Abstract
Recent work has made significant progress on using im-

plicit functions, as a continuous representation for 3D rigid
object shape reconstruction. However, much less effort has
been devoted to modeling general articulated objects. Com-
pared to rigid objects, articulated objects have higher de-
grees of freedom, which makes it hard to generalize to un-
seen shapes. To deal with the large shape variance, we
introduce Articulated Signed Distance Functions (A-SDF)
to represent articulated shapes with a disentangled latent
space, where we have separate codes for encoding shape
and articulation. With this disentangled continuous rep-
resentation, we demonstrate that we can control the ar-
ticulation input and animate unseen instances with unseen
joint angles. Furthermore, we propose a Test-Time Adapta-
tion inference algorithm to adjust our model during infer-
ence. We demonstrate our model generalize well to out-of-
distribution and unseen data, e.g., partial point clouds and
real-world depth images.

1. Introduction
Modeling articulated objects has wide applications in

multiple fields including virtual and augmented reality, ob-
ject functional understanding, and robotic manipulation. To
understand articulated objects, recent works propose to train
deep networks for estimating per-part poses and the joint
angle parameters of an object instance in a known cate-
gory [19, 45]. However, if we want to interact with the
articulated object (e.g., open a laptop), estimating its static
state is not sufficient. For example, an autonomous agent
needs to predict what the articulated object shape will be
like after interactions for planning its action.

In this paper, we introduce Articulated Signed Distance
Functions (A-SDF), a differentiable category-level articu-
lated object representation, which can reconstruct and pre-
dict the object 3D shape under different articulations. A
differentiable model is useful in applications which re-
quire back-propagation through the model to adjust inputs,
such as rendering in graphics and model-based control in

robotics.
We build our articulated object model based on the deep

implicit Signed Distance Functions [30]. While implicit
functions have recently been widely applied in modeling
static object shape with fine details [34, 35, 38], much less
effort has been devoted to modeling general articulated ob-
jects. We observe that models with a single shape code in-
put, such as DeepSDF [30], cannot encode the articulation
variation reliably. It is even harder for the models to gener-
alize to unseen instances with unseen joint angles.

To improve the generalization ability, we propose to
model the joint angles explicitly for articulated objects. In-
stead of using a single code to encode all the variance, we
propose to use one shape code to model the shape of object
parts and a separate articulation code for the joint angles. To
achieve this, we design two separate networks in our model:
(i) a shape encoder to produce a shape embedding given a
shape code input; (ii) an articulation network which takes
input both the shape embedding and an articulation code
to deform the object shape. During training, we use the
ground-truth joint angles as inputs and learn the shape code
jointly with both model parameters. To enable the disentan-
glement, we enforce the same instance with different joint
angles to share the same shape code.

During inference, given an unseen instance with un-
known articulation, we first infer the shape code and ar-
ticulation code via back-propagation. Given the inferred
shape code, we can simply adjust the articulation code to
generate the instance at different articulations. Note the
part geometry remains the same as we fix the inferred shape
code during generation. To generalize our model to out-of-
distribution and unseen data, e.g., partial point clouds and
real-world depth images, we further propose a Test-Time
Adaptation (TTA) approach to adjust our model during in-
ference.

2. Related Work

Neural Shape Representation. A large body of
work [43, 10, 4, 6, 20, 33] has focused on investigating
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efficient and accurate 3D object representations. Recent
advances suggest that representing 3D objects as continu-
ous and differentiable implicit functions [9, 30, 23, 5, 16]
can model various topologies in a memory-efficient way.
Most of these work is limited to modeling static objects and
scenes [9, 12, 46, 38, 26, 34, 24, 37, 41]. Different from
previous works, our method models articulated objects in a
category-level by learning a disentangled implicit represen-
tation and we test our model on real depth images.

Articulated Humans. One line of work leverages para-
metric mesh models [21, 18, 51, 2] to estimate shape and
articulation for faces [39, 32, 36], hands[8], humans bod-
ies [31, 1, 48, 15, 13, 28, 47, 42], and animals [50, 14, 17,
49] by directly inferring shape and articulation parameters.
However, such parametric models requires substantial ef-
forts from experts to construct and thus is hard to gener-
alize to large-scale object categories. To address the chal-
lenge, another line of work [29, 25, 40, 7, 3, 27] employs
neural networks to learn shapes from data. In comparison,
our method is category-level on general articulated objects
and we assume no part label.

3. Method
We propose Articulated Signed Distance Functions (A-

SDF), a differentiable category-level articulated object rep-
resentation to reconstruct and predict the object 3D shape
under different articulations. Our model takes sampled 3D
point locations, shape codes, and articulation codes as in-
puts, and outputs SDF values (signed distance) that measure
the distance of a point to the closest surface point. The key
insight is that all shape codes of the same instance should
be identical, independent of its articulation.

3.1. Formulation

Consider a training set of N instance models for one ob-
ject category. Each instance is articulated into M poses,
leading to a training set of N ×M shapes of the category.
Let Xn,m denote the shape articulated from instance n with
articulation m, where n ∈ {1, . . . , N},m ∈ {1, . . . ,M}.
Each shape Xn,m is assigned with a shape code φn ∈ RC ,
where C denotes the latent dimension, and an articulation
code ψm ∈ RD with D denoting the number of DoFs. The
shape code φn is shared across the same object instance n
across different articulations. During training, we maintain
and update one shape code for each instance. We use joint
angles to represent the articulation code. For example, the
articulation code of a 2-DoF object (e.g., eyeglasses) with
both joints articulated to 45◦ is ψm = (45◦, 45◦). The joint
angle is defined as a relative angle to the canonical pose of
the object.

Let x ∈ R3 be a sampled point from a shape. For nota-
tional simplicity, we omit the subscripts and denote φ and
ψ as the corresponding shape and articulation code of the

shape. As shown in Figure 1, an Articulated Signed Dis-
tance Function fθ is finally defined with the auto-decoder
architecture, which is composed of a shape encoder fs and
an articulation network fa,

fθ(x,φ,ψ) = fa[fs(x, φ),x, ψ] = s, (1)

where s ∈ R is a scalar SDF value (the signed distance
to the 3D surface). The sign of the SDF value indicates
whether the point is inside (negative) or outside (positive)
the watertight surface.

3.2. Training

During training, given the ground-truth articulation code
ψ, sampled points and their corresponding SDF values, the
model is trained to optimize the shape codeφ and the model
parameters θ.

The training process is illustrated in Figure 1. The shape
code is first concatenated with a sampled point x to form
vector of dimension C + 3 and input to the shape encoder.
Then the articulation network takes the shape embedding
and articulation code to predict the SDF value for the in-
put 3D point. When part supervision is available, a linear
classifier is added to the last hidden layer of the articulation
network to simultaneously output the part label.

The training loss functions are defined as following. Let
K be the number of sampled points per shape. The function
fθ is trained with the per-point L1 loss function to regress
SDF values,

Ls(X ,φ,ψ) = 1

K

K∑
k=1

∣∣∣∣∣∣fθ(xk,φ,ψ)− sk∣∣∣∣∣∣
1
, (2)

where xk ∈ X is a point of instance X , sk the corre-
sponding ground-truth SDF value, and k ∈ {1, . . . ,K}.
When the object part labels are available, we include a com-
plementary auxiliary part classification loss using cross-
entropy.

The full loss L(x,φ,ψ) is defined as,

L(X ,φ,ψ) = Ls(X ,φ,ψ) + λφ||φ||22. (3)

Following [30], we include a zero-mean multivariate-
Gaussian prior per shape latent code φ to facilitate learning
a continuous shape manifold.

At training time, the shape codes are randomly initial-
ized with a Gaussian distribution at the very beginning of
training. The articulation codes are constants given from the
ground-truths. The objective is to optimize the loss function
over all N ×M training shapes, defined as follows,

argmin
θ,φn

N∑
n=1

M∑
m=1

L(Xn,m,φn,ψm), (4)

where θ is the network parameters.
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Figure 1: Overview of the proposed method. At training time, the articulation code and randomly sampled shape codes are first concate-
nated with a sampled point separately. The produced embeddings are then input to an articulated signed distance function fθ to regress
SDF values (signed distance) and predict part labels (optional). Note that the same instance is associated with one shape code regardless
of its articulation state. During inference, back-propagation is used to jointly infer the shape code and articulation code for an unseen
instance. With the inferred shape code, the model can faithfully generate new shape at unseen articulations.

3.3. Inference

Basic Inference. In the inference stage, illustrated in the
Inference Section of Figure 1, an instanceX is given and the
goal is to recover the corresponding shape code φ and the
articulation code ψ. This can be done by back-propagation.
The two codes are initialized randomly, the articulation net-
work parameters are fixed, and the codes are inferred jointly
by solving the optimization with the following objective,

φ̂, ψ̂ = argmin
φ,ψ

L(X ,φ,ψ). (5)

We first use Equation 5 to optimize both shape and ar-
ticulation codes as our initial estimation. So the estimated
articulation code ψ̂ is then kept and the shape code is dis-
carded. In the second step, the shape code is re-initialized,
the articulation code is fixed to ψ̂, and the optimization is
only solved for the shape code φ̂.

Test-Time Adaptation Inference. To generalize better
to out-of-distribution data, the Test-Time Adaptation (TTA)
for shape encoder fs is further introduced. It is built on the
basic inference procedure with the estimated shape code φ̂
and articulation code ψ̂. We fix both estimated codes and
finetune the shape encoder fs using the following objective,

f̂s = argmin
fs

L(X , φ̂, ψ̂), (6)

where φ̂ and ψ̂ are obtained as described in the basic in-
ference. Note that our proposed model architecture is the

key for TTA. The separation of shape encoder and articu-
lation network ensures the disentanglement is maintained
when the shape encoder is finetuned.

3.4. Articulated Shape Synthesis

A main advantage of the proposed disentangled contin-
uous representation is that, once a shape code is inferred, it
can be applied to synthesize shapes of unseen instances with
unseen joint angles, by simply varying the articulation code.
This is shown in Figure 1, Generation section. In this stage,
the shape code and finetuned shape encoder fs obtained in
the inference stage is fixed and new shapes are generated by
simply inputting new joint angles to the network.

4. Experiment
4.1. Datasets

For all experiments, the mesh models used are from the
Shape2Motion dataset [44]. Shape2Motion is a large scale
3D articulated object dataset containing 2,440 instances.
We select seven categories with sufficient number of in-
stances per category, which are laptop, stapler, washing ma-
chine, door, oven, eyeglasses, and fridges.

4.2. Shape Synthesis and Part Prediction

One main advantage of our learned disentangled repre-
sentation is its generation ability. We can easily control the
articulation input to generate corresponding shapes of un-
seen instances with unseen joint angles. In this section, we



Laptop Stapler Washing Door Oven Eyeglasses Fridge
DeepSDF [30] (Interpolation) 2.77 8.69 8.04 7.79 11.13 3.33 1.74
Ours (w/o TTA) 0.39 (1.39) 3.77 (3.30) 2.86 (7.10) 0.73 (1.09) 3.77 (7.08) 2.48 (2.58) 0.97 (3.47)
Ours 0.32 (1.59) 3.25 (3.53) 3.01 (8.44) 0.53 (0.95) 2.58 (6.79) 2.42 (2.84) 0.86 (4.19)
Ours (w/o TTA) + part label 0.32 (1.45) 3.08 (3.66) 2.16 (2.66) 0.38 (1.04) 5.19 (3.20) 2.03 (2.12) 0.85 (3.69)
Ours + part label 0.29 (1.48) 2.48 (3.34) 1.96 (2.03) 0.33 (1.67) 3.10 (2.98) 2.16 (2.18) 0.64 (2.98)

Table 1: Chamfer-L1 distance comparison for shape synthesis. Joint angle estimation errors of the proposed method in brackets (·).
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Figure 2: Test on real-world depth images. From left to right: Input depth, DeepSDF reconstruction, Ours reconstruction and generation.
Note that the Ours generation are generated by only changing the articulation code. The shape code is inferred from the input depth of a
laptop at a different articulation. RGB images and joint angles shown are only for visualization purposes and are not input to the model.

study the quality of generated shapes using the proposed
generation method in Section 3.4.

Since DeepSDF does not have the ability to generate
shapes, to provide comparisons, we employ the DeepSDF
Interpolation results as baseline. Given two shapes, the tar-
get shape code is simply computed as a linear combina-
tion of the two inferred latent codes. Note that this is not
a fair comparison as our method requires only one shape
instead of two as for the baseline. Though relying on less
information, the proposed method still yields much better
results as shown in Table 1. We demonstrate that apply-
ing Test-Time Adaption reduces the error further, indicating
that Test-Time Adaption helps with inferring better shape
while maintaining a disentangled representation.

One additional advantage of the proposed method is that
joint angles can be estimated simultaneously. We quanti-
tatively evaluate joint angle prediction errors in degrees, as
shown in brackets in Table 1. Results suggest that the pro-
posed model can predicts joint angles accurately during the
inference stage. We also demonstrate that, if provided, part
labels can further boost the performance. Models trained
with part labels are denoted as Ours + part labels.

4.3. Test on Real-world Depth Images

We quantitatively show the proposed method generalizes
better on real-world depth images, as shown in Table 2. The
RBO dataset [22] is a collection of 358 RGB-D video se-
quences of humans manipulating articulated objects, with
the ground-truth poses of the rigid parts annotated by a mo-
tion capture system. We take laptop depth images from dif-
ferent sequences in the dataset and crop laptops from depth

Reconstruction Generation
DeepSDF [30] 4.65 -
Ours (w/o TTA) 2.53 5.09
Ours 0.76 3.22

Table 2: Chamfer-L1 distance comparison on real-world depth im-
ages. The Chamfer-L1 distance here is from ground-truth depth to
reconstructed shape. DeepSDF is not able to generate new shapes.

images by applying Mask R-CNN [11] on the correspond-
ing rgb images. We generate corresponding point clouds
from real depth images, and then exploit the ground-truth
pose to align the point clouds to the canonical space defined
by Shape2motion dataset [44].

In Table 2, we show both reconstruction and generation
results. Note both models are not trained on real-world
depth images. Given a real-world depth image, we obtain
its corresponding point clouds, input it to the model trained
on synthetic data to reconstruct its 3D shape, and evaluate
the reconstruction performance as the one-way Chamfer-L1
distance from ground-truth depth to reconstructed shape.
Next, we take the shape code from the previous recon-
structed shape and change the articulation code to output
shapes at multiple unseen articulation. We take the real
depth images at these new articulation and use the gener-
ated corresponding point clouds as the ground-truth to eval-
uate the generation performance. As visualized in Fig 2, the
proposed model reliably synthesize shapes at unseen articu-
lation whereas DeepSDF does not have the ability to gener-
ate shapes. Table 2 results suggest that applying Test-Time
Adaption reduces the error further on both reconstruction
and generation.
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[20] Yiyi Liao, Simon Donné, and Andreas Geiger. Deep march-
ing cubes: Learning explicit surface representations. In
CVPR, pages 2916–2925, 2018. 1

[21] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard
Pons-Moll, and Michael J. Black. SMPL: a skinned multi-
person linear model. ACM Trans. Graph., 34(6):248:1–
248:16, 2015. 2

[22] Roberto Martı́n-Martı́n, Clemens Eppner, and Oliver Brock.
The RBO dataset of articulated objects and interactions. Int.
J. Robotics Res., 38(9), 2019. 4

[23] Lars M. Mescheder, Michael Oechsle, Michael Niemeyer,
Sebastian Nowozin, and Andreas Geiger. Occupancy net-
works: Learning 3d reconstruction in function space. In
CVPR, pages 4460–4470, 2019. 2

[24] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, pages 405–421, 2020. 2

[25] Michael Niemeyer, Lars M. Mescheder, Michael Oechsle,
and Andreas Geiger. Occupancy flow: 4d reconstruction
by learning particle dynamics. In ICCV, pages 5378–5388,
2019. 2

[26] Michael Niemeyer, Lars M. Mescheder, Michael Oechsle,
and Andreas Geiger. Differentiable volumetric rendering:
Learning implicit 3d representations without 3d supervision.
In CVPR, pages 3501–3512, 2020. 2

[27] Atsuhiro Noguchi, Xiao Sun, Stephen Lin, and Tatsuya
Harada. Neural articulated radiance field. arXiv preprint
arXiv: 2104.03110, 2021. 2

[28] Mohamed Omran, Christoph Lassner, Gerard Pons-Moll, Pe-
ter V. Gehler, and Bernt Schiele. Neural body fitting: Uni-
fying deep learning and model based human pose and shape
estimation. In 3DV, pages 484–494, 2018. 2

[29] Pablo R. Palafox, Aljaz Bozic, Justus Thies, Matthias
Nießner, and Angela Dai. Npms: Neural parametric models
for 3d deformable shapes. arXiv preprint arXiv:2104.00702,
2021. 2

[30] Jeong Joon Park, Peter Florence, Julian Straub, Richard A.
Newcombe, and Steven Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation.
In CVPR, pages 165–174, 2019. 1, 2, 4

[31] Sida Peng, Yuanqing Zhang, Yinghao Xu, Qianqian Wang,
Qing Shuai, Hujun Bao, and Xiaowei Zhou. Neural body:
Implicit neural representations with structured latent codes
for novel view synthesis of dynamic humans. arXiv preprint
arXiv: 2012.15838, 2021. 2



[32] Anurag Ranjan, Timo Bolkart, Soubhik Sanyal, and
Michael J. Black. Generating 3d faces using convolutional
mesh autoencoders. In ECCV, pages 725–741, 2018. 2

[33] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger.
Octnet: Learning deep 3d representations at high resolutions.
In CVPR, pages 6620–6629, 2017. 1

[34] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Mor-
ishima, Hao Li, and Angjoo Kanazawa. Pifu: Pixel-aligned
implicit function for high-resolution clothed human digitiza-
tion. In ICCV, pages 2304–2314, 2019. 1, 2

[35] Shunsuke Saito, Tomas Simon, Jason M. Saragih, and Han-
byul Joo. Pifuhd: Multi-level pixel-aligned implicit function
for high-resolution 3d human digitization. In CVPR, pages
81–90, 2020. 1

[36] Soubhik Sanyal, Timo Bolkart, Haiwen Feng, and Michael J.
Black. Learning to regress 3d face shape and expression from
an image without 3d supervision. In CVPR, pages 7763–
7772, 2019. 2

[37] Vincent Sitzmann, Julien N. P. Martel, Alexander W.
Bergman, David B. Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation func-
tions. CoRR, abs/2006.09661, 2020. 2

[38] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wet-
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