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Abstract

Monitoring of large structures for deformations can be
performed by aligning the 3D point clouds of the structure
scanned at different times. Existing methods based on the
Iterative Closest Point algorithm either ignore features due
to high outlier ratios or require measurements to adjust the
estimations. In this paper, we propose to use a deep regis-
tration framework, not only for learning discriminative fea-
tures but also their associated confidences. The confidences
are directly informed by the registration in an end-to-end
manner, resulting in state-of-the-art performance without
any extraneous measurements. Our work is the first to use
learned features and deep registration models for deforma-
tion monitoring; therefore, we plan to share our data, code,
and the models to benefit further research.

1. Introduction

Undesired deformations of civil engineering structures
such as historic assets may arise due to nearby construc-
tion activities. In current engineering practice, monitoring
of slow (e.g. static) deformations is conducted using well-
established surveying techniques. These techniques require
the use of electronic distance measurement devices, such
as total stations, which track the position of reflective tar-
gets installed on the structure over time. However, in some
cases, it is not possible to place targets on the structure and
non-contact techniques may be required.

Non-contact deformation monitoring can be achieved by
comparing 3D point clouds of the structure, acquired at
different times by using laser scanning. Comparing point
clouds requires identifying their corresponding sections and
estimating the deformations between them by registering
them to one another. While structural deformations are
globally non-rigid, they can be estimated point-wise by lo-
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Figure 1: The target L1 arch (left) and the deflected shape
(right) where deformations are scaled by ×100.

cally rigid registrations of small point cloud patches.
Within this context, traditional algorithms, such as the

Piecewise Alignment Method (PAM) [15], perform rigid
registration of small point cloud segments using the Iter-
ative Closest Point (ICP) algorithm. The ICP algorithm
is based on establishing correspondences between point
clouds using point-to-point distances. As such, this tech-
nique suffers from the arbitrary matching of points and pre-
dicts deformation fields that are very different from the to-
tal station measurements that can be considered as ground
truth. The Iterative PAM (IPAM) [3] introduces hand-
crafted constraints to PAM to prevent arbitrary matching of
points. IPAM results in a successful registration; however,
it relies on control points with known deformations.

While traditional algorithms for structural health moni-
toring are based on ICP, there is a paradigm shift for point
cloud registration in computer vision. Deep learning meth-
ods provide not only better correspondences with reliable
confidence measures [7] but also registrations free from lo-
cal optima problem [4], typically encountered in ICP meth-
ods and variants. These methods have not been utilized for
deformation monitoring in structures despite their success
in registering CAD models of objects [16], point clouds
of room layouts [4], and outdoor scenes [11]. Deforma-
tion monitoring presents new challenges for these meth-
ods. First, instead of a single global transformation, in-



Figure 2: Visualization of Correspondences. This fig-
ure shows correspondences between two patches with high
confidence values (> 0.9) as predicted by our registration
method. Despite little information, our algorithm produces
accurate correspondences distributed throughout the patch.

dependent transformations need to be determined for local
regions. Second, expected deformations tend to be signifi-
cantly smaller than other applications, typically in the order
of millimeters or centimeters.

In this paper, we propose a learning-based method to ad-
dress these challenges. We process the point cloud of the
structure by extracting small patches. We assume defor-
mations within a patch to be the result of the same rigid
transformation and propose to learn these transformations
independently in a sliding window manner. We first extract
deep geometric features on patches [7] and identify a set of
initial correspondences based on these features. We then
learn the reliability of these correspondences together with
the registration [4]. Focusing on these small patches allows
us to achieve a high deformation sensitivity that would oth-
erwise be hard to detect. We evaluate our method on geo-
referenced point cloud data from arched viaducts in London
Bridge Station, which experienced structural deformations.
Our method achieves better results than PAM and compara-
ble results to IPAM without using any control points.

2. Methodology

We perform pairwise registration of point clouds scanned
at different times to estimate structural deformations that
occurred between these times with high accuracy.

Feature Extraction: For a successful registration, the
first step is to establish reliable correspondences based
on some features of the point cloud. Recently, learning-
based methods like Fully Convolutional Geometric Features
(FCGF) [7] have shown remarkable performance by pro-
cessing the entire input point cloud with fully convolutional
layers. Similarly, we use a 3D fully-convolutional network
for extracting geometric features from 3D point clouds. By
adapting the sparse tensor representation and metric learn-
ing losses introduced by Choy et al. [7], we can extract ac-
curate features in a fast and memory-efficient way as shown
in Fig. 2. These point-wise features summarize the geomet-

ric context around each point into a low-dimensional feature
vector to ensure the efficiency of the following steps.

Our goal is to register two point clouds X t =
{xt

1, . . . ,x
t
N} ∈ R3×N and X t′ = {xt′

1 , . . . ,x
t′

M} ∈
R3×M , taken at time t and t′ with N and M points, re-
spectively. We establish an initial set of correspondences
based on the nearest neighbor search in the learned feature
space. This step already provides a set of correspondences
that can be filtered out for noise and used for registration
as shown in the baselines in Section 3.2. However, as in
Deep Global Registration (DGR) [4], we train a confidence
network to predict the probability of being an inlier for a
pair of points (xt

i,x
t′

j ). We use the same U-Net architecture
with residual blocks as proposed by Choy et al. [4] and train
it with a Binary Cross Entropy (BCE) loss. Positive cor-
respondences are defined according to point-to-point dis-
tances up to a threshold. As the ratio of inliers over outliers
is very small, we experiment with balancing the positives
and negatives by weighting the BCE loss which results in
better performance.

2.1. Locally Rigid Registration

In an end-to-end registration pipeline, we optimize for
the weights wi,j for each pair of points (xt

i,x
t′

j ) in the ini-
tial set of correspondences C. In particular, we use the
Weighted Procrustes method that minimizes the weighted
mean squared error to find the optimal rotation R̂ and the
translation t̂ corresponding to the best alignment:

R̂, t̂ = arg min
R,t

∑
i,j∈C

wij ||xt
i − xt′

j ||2 (1)

= arg min
R,t

∑
i,j∈C

wij (xt′

j − (R xt
i + t))2

There is a closed-form solution to find the optimal R̂, t̂ in
Eq. 1 as a weighted least squares transformation [14, 9, 4].
Since Weighted Procrustes is differentiable, gradients can
be passed to the weights to learn confidence values in-
formed by the registration. In addition to the BCE for learn-
ing confidence values, there is a differentiable rotation and
translation error in the final loss function as in DGR.

We use a sliding window to extract patches with match-
ing center locations from the target arch pairs at different
dates and calculate the registration for each pair indepen-
dently. This is different from IPAM, which sequentially
processes neighboring patches based on the results of the
previous patches. Our approach is parallelizable and avoids
introducing dependence by the order of processing.

Robust Registration and Fine-tuning: We improve the
results of the Weighted Procrustes by first applying the ro-
bust registration method from DGR and then fine-tuning
with ICP. Starting from the result of the Weighted Pro-
crustes, the robust registration minimizes an energy func-



tion based on the sum of weighted robust Huber losses using
a continuous representation of rotations to remove discon-
tinuities. We also experiment with ICP for further refine-
ment by using a small maximum correspondence distance,
i.e. twice the voxel size as proposed in DGR.

2.2. From Registration to Deformations

Given the result of registration as the rotation matrix R̂
and the translation vector t̂, we calculate the displacement
vector ∆x = [∆x,∆y,∆z]T according to the movement of
patch centers [15, 3] as follows:[

∆x
0

]
=

(
I4 −

[
R̂ t̂
0 1

])[
x̄
1

]
(2)

where x̄ is the spatial average of the points in the patch con-
taining deformations and I4 is the 4 × 4 identity matrix.
Then, the first (∆x) and the last (∆z) components of the
displacement vector correspond to the lateral and vertical
displacements (left and middle in Fig. 3, respectively).

3. Experiments

Model Details: Our models are based on the original
FCGF and DGR [5, 7, 4]. For feature learning and confi-
dence estimation, we respectively use 3D and 6D versions
of the ResUNet architecture from [6], a sparse U-shaped
network [12] with generalized convolutions [5, 7] and resid-
ual connections [10] in the form of short and long skip con-
nections. We use 7 channels in the first layers of the models,
32 for the feature dimension and 0.01m for the voxel size.
The feature model was trained using the hardest contrastive
loss with normalized features.

3.1. Experimental Setup

We evaluated our approach on 3D point cloud scans of
E57 London Bridge Station [3]. We used five additional
bridge scans for training the feature model. We compare
our approach to the previous work on the L1 Arch (Fig. 1)
and exclude it from training. When training the feature
model, we obtained the input pairs by first extracting a ran-
domly oriented cube of size 1m3 from a random location in
one of the scans and then extracting random one of its 18-
connected neighbors to obtain a second cube of the same
size. We found the sampling distance between the two
cubes, the interval, to be an important parameter as it af-
fects the overlap ratio between the cubes. Like FCGF, we
aimed for at least 30% overlap ratio and experimented with
intervals of 0.5m and 0.25m in the direction of axes when
using the 1m3 cubes. For training, we used random rota-
tions between −45 and 45 degrees around a random axis.

For training DGR, we experiment with two patch extrac-
tion methods; DGR-Temporal (DGR-T) similar to evalua-
tion, at the same random location from different times, and

Feature Registration Fine-tuning RMSE (∆z)

FPFH [13] Robust - 29.52
FCGF [7] Robust - 19.5185
FPFH [13] FGR [17] - 16.7135
FCGF [7] FGR [17] - 15.0478

- PAM [15] - 9.7728
- PAM (Ours) - 7.4449

FCGF [7]

DGR-T - 2.6986
DGR-S - 2.1518
DGR-T X 2.062
DGR-S X 1.5822

Table 1: Comparison to Baselines. This table compares
our methods DGR-T and DGR-S to several baselines with
different feature representations and registration methods.

DGR-Spatial (DGR-S) similar to FCGF, from different spa-
tial locations on the same scan. For evaluation and DGR-T
training, we used geo-referenced undeformed and deformed
point clouds with the same X and Y coordinates.

3.2. Results

We perform comparisons according to the vertical dis-
placements ∆z, lateral displacements ∆x, and rotation
∆θy . We also plot the deflected shapes on the L1 arch as
shown on the right in Fig. 1. We report the RMSE results
using only ∆z, which is the dominant direction of move-
ment. Although there are total station measurements that
can be regarded as ground truth, they are very scarce, i.e.
only on three locations on the arch. Therefore, we compute
the RMSE of the methods with respect to IPAM, which is
conditioned by and agrees with total station measurements.
We report the results of both the original and our version of
PAM with our extracted patches and Open3D implementa-
tion of ICP, which results in slightly better performance.

In Table 1, we first evaluate the performance of our
learned features FCGF in comparison to Fast Point Feature
Histogram (FPFH) features [13] by using two registration
algorithms, Fast Global Registration (FGR) [17] and a ro-
bust iterative re-weighted least-square optimization-based
registration (Robust) [7]. Both features perform better with
FGR, and learned features FCGF outperforms FPFH in each
case. Feature-based methods without any outlier filtering
perform worse than PAM due to ambiguities in matching.
FCGF features within the DGR framework perform signif-
icantly better due to learned outlier filtering via confidence
measures. DGR-S, in which the pairs are extracted from
the same scan, performs better than the DGR-T due to exact
correspondences in the overlapping area. ICP fine-tuning
with a maximum correspondence distance of 0.02m, i.e.
twice the voxel size as in DGR, improve the results for both
DGR-based methods.
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Figure 3: Comparison to Existing Methods. In this plot, we compare our displacement results to PAM and IPAM on the L1
Arch in terms of vertical displacements (left), lateral displacements (middle) and in-plane rotations (right). Our results are
close to the total station measurements marked as circles, in agreement with IPAM which relies on measurement values.

Interval Fine-tuning RMSE (∆z)

0.5 - 5.7856
X 7.2675

0.25 - 3.0792
X 2.6290

Table 2: The Effect of Interval. This table compares the
two values of the interval parameter using the DGR-T.

In Figure 3, we compare our method to PAM and IPAM
by plotting displacements. Our ∆z displacements are con-
sistently closer to IPAM than PAM without imposing any
constraints. Moreover, our ∆x displacements are overall
better than PAM and ∆θy rotation values mostly agree for
all methods. As shown on the left in Fig. 3, the sharp gradi-
ent changes in ∆z vs. x plot around the ordinates x = 2m
and x = 8m is captured well by our method. These indicate
hinge formations, where structural damage is concentrated.

3.3. Ablation Study

In Table 2, we compare two different values for the inter-
val parameter as 0.5m and 0.25m. While both still perform
better than the PAM results reported in Table 1, a smaller in-
terval value leads to a higher overlap ratio and results in sig-
nificantly better results, both with and without fine-tuning.
The task becomes easier with high overlap ratios, but also,
results are better because the train and test time conditions
align more. During testing, we compare patches from the
same location on the arch but from different times.

We perform an ablation study with other important
hyper-parameters including balancing in the BCE loss and
the weight of Procrustes loss. The results are shown in Ta-
ble 3 for both DGR-T and DGR-S with and without fine-
tuning with ICP. Due to the high ratio of outliers in the fea-
ture matching, balancing in the BCE loss improves the re-
sults noticeably both for DGR-S and DGR-T. Doubling the
weight of Procrustes further improves the results by shift-
ing the focus from confidences to the quality of registration,

DGR BCE
Balanced

Procrustes
Weight

Fine
-tuning RMSE (∆z)

T

- ×1
-

2.9468
X ×1 2.6986
X ×2 3.0792

- ×1
X

2.4895
X ×1 2.0262
X ×2 2.6290

S

- ×1
-

3.0225
X ×1 2.1911
X ×2 2.1518

- ×1
X

3.0160
X ×1 2.0400
X ×2 1.5822

Table 3: The Effect of Loss Parameters. This table shows
the effect of balancing the BCE loss and increasing the
weight of Procrustes loss for both DGR-T and DGR-S.

leading to the best performance with DGR-S. Fine-tuning
with ICP consistently improves the results in all cases.

4. Conclusion
We adapted an end-to-end deep registration framework

for deformation monitoring. We first extract geometric fea-
tures on the point cloud and then learn their confidences
together with the registration. Our method outperforms a
traditional method based on ICP and performs similarly to
the state-of-the-art method that requires extraneous infor-
mation from other measurements. Although high accuracy
levels can be achieved by focusing on small regions, we
suspect that errors arise due to the independent processing
of local patches. In future, we plan to relate our local esti-
mations to each other in a global optimization framework to
capture global non-rigid deformation patterns. We also plan
to apply our algorithm to other data which features different
geometries and deformation patterns [1, 8, 2].
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