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Abstract

Several works have shown that deep learning models are vulnerable to adversarial
examples crafted by adding visually imperceptible noise to an image. However,
these perturbations lack semantic meaning and have limited real world signifi-
cance. Recently, a number of methods have been proposed for crafting semantic
adversarial examples by leveraging techniques from computer graphics such as
differentiable ray-tracing and image based rendering to simulate real world condi-
tions. However, it is unclear whether algorithms can be designed to create models
that are robust to such attacks. This poses a serious threat to the security guarantee
of deep learning systems. In this work, we investigate whether techniques such as
adversarial training that have been successful in creating models that are robust
to image space attacks, can be used in conjunction with differentiable ray-tracing
to defend against semantic adversarial attacks. Additionally, to the best of our
knowledge there is no benchmark established for this task, so we create a simple
3D traffic-sign dataset to simulate attacks in the 3D domain. This dataset is meant
to serve as a benchmark for future work. Finally, our results confirm that there is
only a marginal benefit to using gradient based methods to defend against these
attacks, demonstrating the importance of further study on this problem setting.

1 Introduction

The existence of adversarial examples poses serious security concerns for deep learning based
systems [1]. A number of techniques have been proposed for both adversarial attacks [2, 3, 4]
and defenses [5, 6, 7] in the 2D pixel space. However, such perturbations do not have semantic
meaning, and scarcely occur in the real world [8, 9]. Therefore, recently there has been some
work on producing semantic adversarial examples by using image based rendering [10] (e.g. by
corrupting the albedo of the image), perturbing 3D scene parameters like lighting, camera location,
mesh vertices [11, 12, 13, 14] or by introducing spatial changes such as translations and rotations
to 2D images [15]. However, little has been done to learn models which are robust to these attacks.
Therefore, in this work, our main goal is to learn models which are robust to meaningful semantic
changes. Towards this goal, we parameterize semantic changes in the 3D scene space and employ a
differentiable ray-tracer [11] to simulate real world conditions. This allows us to generate adversarial
examples in the 3D space, which can then be used in standard algorithms to learn robust models.

Note that crafting an attack by perturbing 3D scene parameters, requires access to the 3D
model/scene [11]. To the best of our knowledge, there is no well-defined benchmark for evalu-
ating robust models in the 3D scene parameter space. Therefore, we create a simple dataset of 3D
traffic signs (Fig. 1). Note that since synthetic traffic signs resemble the real world, this dataset has
direct applicability for real world tasks such as autonomous driving. Moreover, we make use of a
differentiable ray-tracer to simulate real world conditions. Therefore, this is a well motivated setting
for adversarial robustness.
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Figure 1: Exemplar ray-traced images from our dataset.

Thus, the contributions of this paper are as follows,

• We create a dataset of 3D traffic signs for benchmarking robustness to simple scene changes.
• We perform robust training in the 3D scene parameter space using PGD adversaries [16].
• Our results confirm that PGD adversaries marginally improve robustness to scene changes.

However, our robust model obtains low accuracy on test-set adversaries generated using a
local grid search1, verifying that PGD cannot reliably find the worst case adversary.

• We introduce a novel strategy to generate stronger adversaries in the 3D scene parameter
space by combining the local grid search with PGD.

2 Background

Pixel Space Adversarial Attacks. A standard method for computing adversarial examples for an
image, x with class label, y is by projected gradient descent on the negative loss function [16],

x(k+1) = Πx+S(x(k) + α(∇xL(H, x(k), y)) (1)

Here α is the learning rate, S ⊆ Rd is the set of allowable perturbations to x and L refers to a loss
function applied to predictions from classifier,H. Πx+S is a projection onto an allowable set.

2D Spatial Attacks. These refer to a more natural/semantic class of perturbations such as 2D
spatial translations and rotations. Works such as [15] show that standard first order techniques such
as PGD [16] cannot be used to reliably find worst case perturbations in this setting. Given the
low dimensional parameter space, adversaries are found by randomly sampling 10 transformations
from the space of allowable perturbations. However, such methods are not guaranteed to work
with a complex high dimensional search space such as 3D scene parameters. Moreover, these 2D
transformations still do not accurately resemble real world conditions.

Adversarial Attacks on 3D scene parameters. Recently, a number of methods have been proposed
to craft semantic adversarial attacks by perturbing 3D scene parameters such as camera position [17,
14], mesh geometry and light position [12]. However, most of these works consider a large range for
each degree of freedom, and use complex geometrical objects which results in unnatural adversarial
examples [17] that do not necessarily reflect what happens in the real world. For these reasons,
the experimental setup makes it hard to quantify robustness with respect to such attacks. Therefore,
in this work, we consider a simplified scenario of 3D traffic signs, constrain the scene parameters
to match natural conditions, and employ a differentiable ray-tracer [11] to simulate the real world
image generation process. Since traffic sign detection has clear applications in tasks like autonomous
driving, this is a well motivated setting for evaluating adversarial robustness.

3 Adversarial Attack and Defense on 3D Scene Parameters

In this section, we first describe our dataset creation pipeline, followed by adversarial attacks on 3D
scene parameters and a discussion on adversarial training pipelines to defend against these attacks.
We end with a description of evaluation strategies to quantify robustness.

1For each sample, we create a uniform grid over the range of allowable perturbations
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Figure 2: Left: An illustration of 3D scene parameters viz. Camera and Light. The classifier takes in
as input a ray-traced image of the 3D traffic sign captured by a camera at an initial distance dc from
the traffic sign. Additionally, the scene is illuminated by a light at distance dl. The relative rotations
of the camera and light can be uniquely described using a combination of three angles: azimuth (θ),
elevation (φ) and tilt/in-plane rotation (ψ). Right: Overall Pipeline.

Dataset Creation. We downloaded a traffic sign 3D mesh model pack (containing 56 different traffic
signs) from an open source website2 and used Blender to create the 3D scene. This allows us to
simulate various scene changes such as lighting effects, camera viewpoint, etc. (See Fig. 1) Note that
this pipeline can be enhanced by adding in a sky, environment lighting, and other objects to the scene
like occluders, etc, but we chose to start with a simple dataset. Our dataset is formally defined as,

X = {(RayTracer(pj , t), yt) : pj ∼ P, t ∈ T , 1 ≤ j ≤ N} (2)

Algorithm 1: Robust Model Training
require: A training set X =
{(RayTracer(pj , t), yt) : pj ∼ P, t ∈ T }

/*Pretraining the classifier on X*/
for iter in npret do

Sample a minibatch Xs ∈ X
TrainH on minibatch Xs

end

/*PGD-Adversarial Training*/
for iter in niters do

Sample a minibatch Xs ∈ X
/*Modify Xs*/
for RayTracer(pj , t), yt in Xs do

Randomly perturb pj
ntrainpgd step PGD on pj (Eqn. 3).

end
/*Train*/
TrainH on minibatch Xs

end

Here P ⊆ R7 is the allowed camera and light
configurations in the dataset (Refer Table. 1), T
is the set of traffic signs, and N is the dataset size.
A subset, Xtrain ⊂ X is set aside for training.

3D Threat model. The standard notion of a pixel
space adversarial attack can be extended to the
domain of 3D scene parameters such as camera
and light position. Note that these perturbations
which we aim to find are in the 3D domain, while
our classifier takes in a ray-traced 2D image as
input. Therefore, we use a differentiable ray-tracer
to backpropagate gradients from the classifier to
3D scene parameters. We consider four degrees of
freedom for a perturbation to the camera position,
and three for the light position3 (See Fig. 2a for
an illustration of these parameters). This gives us
a set of 7 scene parameters which we collectively
refer to using the vector p. More concretely, we
aim to perturb p to craft an adversarial attack. We
perform projected gradient descent on the negative
loss function to discover the adversary,

p(k+1) = Πp+S(p(k) + α(∇pL(H,RayTracer(p(k), t), yt)) (3)

Here,H refers to the classifier parameters, t ∈ T is the 3D traffic sign scene with scene parameters
specified by p, and yt signifies the class label associated with traffic sign t. α is the learning rate,
which can be set per-parameter and S ⊆ R7 is the set of allowed perturbations.

Adversarial Training using 3D Threat model. We craft adversarial examples using this definition
of a 3D threat model, and use these samples to perform adversarial training (See Fig. 2b). Note that
we initialize each adversarial attack to uniformly within S (See Algorithm. 1).

Evaluation Strategy. We evaluate the test set accuracy using four methods. In the first method
(PGD), for a given traffic sign t starting at scene parameter pj , we run the PGD without the random

2turbosquid.com
3Note that, we omit the tilt parameter for the light, as it doesn’t significantly alter the ray-traced image.
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pi minpi
maxpi

Cam. Azimuth -60 60
Cam. Elevation -30 30

Cam. Tilt -45 45
Cam. Distance 0.3 0.6
Lgt. Azimuth -60 60
Lgt. Elevation -70 70
Lgt. Distance 0.3 0.7

Test Accuracy

Model PGD PGD + RS GS GS+PGD

Data Aug. 0.78 0.72 0.42 0.27
Robust 0.89 0.81 0.40 0.33

Hyperparameters

nteststarts 1 8 - -
ntestpgd 50 50 0 5

Table 1: Left: Sampling limits of different scene parameters (angles: degrees, distance: meters).
Refer Fig. 2a for a visualization of these parameters. Right: Comparison between Data Augmentation
and the Robust model for different number of random starts, using PGD and Local Grid Search (GS).

initialization, whereas the second method (PGD+RS) runs the PGD iterations after a random start in
the allowable perturbation range (same as Algorithm 1). For each test sample, we perform nteststarts
restarts and select the worst case accuracy. The third method is grid search (GS), where we sample a
uniform grid of size n7grid in the range [pj − ε, pj + ε], and select the worst case sample4. The fourth
method (GS+PGD) is grid search with an additional step of PGD iterations at each grid location. As
the range is now quantized, a lower value of α = ε/(ngrid ∗ ntestpgd ) is sufficient to explore the entire
parameter space. Note that the perturbation strength ε can be set per scene parameter.

4 Experiments

We start with a dataset that has 200 ray-traced images per traffic sign. For creating the test set, we set
aside one scene configuration for each traffic sign, which gives us 56 test samples. The remaining data
is split into a train set (90%), and a validation set (10%). As a baseline, we simply skip the iterative
update to pj in Algorithm 1, and retain the random start. We call this the "Data-Augmentation"
model, and the model trained with the PGD iterations is called "Robust" model. The set of allowed
scene configurations, P are reported in Table 1, and we set the perturbation strength, ε to 20%
of the total range. This means that the allowable perturbations are in the range [−ε,+ε] where
ε = 0.2 ∗ (maxp −minp). Note we set α = ε/ntrainpgd where ntrainpgd = 10. The architecture of the
classifierH, comprises of the first 6 layers of a pretrained VGG16 [18], followed by a 3x3 conv and
two FC layers of dimensions 256 and 128. We use ReLU activations between the layers.

We draw some interesting observations from this experiment. First, we find that the Robust model
performs better than Data Augmentation when the test strategy is PGD or PGD+RS. Note that the
test accuracies are reasonably high for these two evaluation strategies. However, when we evaluate
the models using grid search (GS), we immediately find a significant drop in accuracy, confirming
that PGD adversaries are insufficient for measuring robustness in this setting. Additionally, it is
interesting to note that when we use grid search augmented with PGD iterations as the test strategy,
the accuracy of the Robust model is slightly higher than Data Augmentation. This is primarily due to
the fact that GS has a limited sampling capacity and doesn’t approximate the parameter space as well
as (GS+PGD). Since Data Augmentation is bound to perform better on average case (non-adversarial)
examples, it is not surprising that when evaluated just with GS, it has a higher accuracy when
compared to the Robust model. We immediately find that, when the grid search is augmented with
PGD iterations (GS+PGD), the Robust model outperforms Data Augmentation as it better models the
worst case adversary.

5 Conclusion

Our results indicate that even on a simple traffic signs dataset, both the Robust model trained with
PGD and the Data Augmentation model yield low test set-accuracy using grid search. Thus, it is
clear that although standard first order methods such as PGD have some marginal benefit, they fail to
reliably find the worst case adversary. Therefore, new techniques are required to work in the highly
discontinuous and non-convex space of 3D scene parameters. This inspires a new direction of study
in the area of adversarial robustness.

4For each parameter, we consider 4 points in it’s range, which gives us 47 = 16384 scene parameter vectors
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