
Inverse Graphics GAN: Supplemental Material

A Related Work

Geometry Based Approaches (or 3D Reconstruction): Reconstructing the underlying 3D scene
from only 2D images has been one of the long-standing goals of computer vision. Classical work
in this area has focused on geometry based approaches in the single instanced setting where the
goal was only to reconstruct a single 3D object or scene depicted in one or more 2D images
[3, 9, 4, 14, 25, 42, 47, 49, 48]. This early work was not learning based, however, and so was unable
to reconstruct any surfaces which do not appear in the image(s).

Learning to Generate from 3D Supervision: Learning-based 3D reconstruction techniques use a
training set of samples to learn a distribution over object shapes. Much past work has focused on
the simplest learning setting in which we have access to full 3D supervision. This includes work
on generating voxels [5, 8, 45, 55, 56], generating point-clouds [1, 12, 23, 58, 1, 26], generating
meshes [17, 40, 53] and generating implicit representations [2, 7, 16, 21, 33, 34, 41, 46, 57]. Creating
3D training data is much more expensive, however, because it requires either skilled artists or
a specialized capture setup. So in contrast to all of this work we focus on learning only from
unstructured 2D image data which is more readily available and cheaper to obtain.

Learning to Generate from 2D Supervision: Past work on learning to generate 3D shapes by
training on only 2D images has mostly focused on differentiable renderers. We can categorize this
work based on the representation used. Mesh techniques [24, 6, 15, 18] are based on deforming a
single template mesh or a small number of pieces [18], while Loper and Black [30] and Palazzi et al.
[39] use only a low-dimensional pose representation, so neither is amenable to generating arbitrary
topologies. Concurrent work on implicit models [38, 29] can directly learn an implicit model from 2D
images without ever expanding to another representation, but these methods rely on having camera
intrinsics for each image, which is usually unavailable with 2D image data. Our work instead focuses
on working with unannotated 2D image data.

The closet work to ours uses voxel representations [13, 19]. Voxels can represent arbitrary topologies
and can easily be converted to a mesh using the marching cubes algorithm. Furthermore, although it is
not a focus of this paper, past work has shown that the voxel representation can be scaled to relatively
high resolutions through the use of sparse representations [45].Gadelha et al. [13] employs a visual
hull based differential renderer that only considers a smoothed version of the object silhouette, while
Henzler et al. [19] relies on a very simple emission-absorption based lighting model. As we show
in the results, both of these models struggle to take advantage of lighting and shading information
which reveals surface differences, and so they struggle to correctly represent concavities like bathtubs
and sofas.

In contrast to all previous work, our goal is to be able to take advantage of fully-featured industrial
renderers which included many advanced shading, lighting and texturing features. However these
renderers are typically not built to be differentiable, which is challenging to work with in machine
learning pipelines. The only work we are aware of which uses an off-the-shelf render for 3D
generation with 2D supervision is Rezende et al. [44]. In order to differentiate through the rendering
step they use the REINFORCE gradients [54]. However, REINFORCE scales very poorly with
number of input dimensions,allowing them to show results on simple meshes only. In contrast,
our method scales much better since dense gradient information can flow through the proxy neural
renderer.
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Neural Rendering With the success of 2D generative models, it has recently become popular to
skip the generation of an explicit 3D representation Neural Rendering techniques focus only on
simulating 3D by using a neural network to generate 2D images directly from a latent space with
control over the camera angle [11, 36, 50] and properties of objects in the scene [28]. In contrast, our
goal is to generate the 3D shape itself, not merely controllable 2D renders of it. This is important
in circumstances like gaming where the underingly rendering framework is may be fixed, or where
we need direct access to the underlying 3D shape itself, such as in CAD/CAM applications. We do
however build directly on RenderNet Nguyen-Phuoc et al. [37] which is a neural network that can be
trained to generate 2D images from 3D shapes by matching the output of an off-the-shelf renderer.

Differentiating Through Discrete Decisions Recent work has looked at the problem of differentiat-
ing through discrete decisions. Maddison et al. [31] and Jang et al. [22] consider smoothing over the
discrete decision and Tucker et al. [52] extends this with sampling to debias the gradient estimates.
In section the main paper we have discuss why these methods cannot be applied in our setting. Liao
et al. [27] discusses why we cannot simply differentiate through the Marching Cubes algorithm, and
also suggests using continuous voxel values to generate a probability distribution over 3D shapes.
However in their setting they have ground truth 3D data so they directly use these probabilities to
compute a loss and do not have to differentiate through the voxel sampling process as we do when
training from only 2D data.

B A note on the challenges of applying REINFORCE in our setting

The main challange of the paper lies in the fact that the generation process
xc ∼ pG(xc)⇔ z ∼ p(z),xc = Gθ(z),

y ∼ pG(y)⇔ xc ∼ pG(xc),xd ∼ p(xd|xc),y = Rd(xd).

involves sampling a discrete variable xd thus making the generator’s loss non-differentiable w.r.t. θ.
An initial solution would be to use the REINFORCE gradient estimator [54]:
∇θLgen(θ) = EpG(xc)

[
Ep(xd|xc) [logDφ(Rd(xd))]SG(xc)

]
, SG(xc) = ∇θ log pG(xc).

The expectation term Ep(xd|xc) [logDφ(Rd(xd))] is called the “reward” of generating xc ∼ pG(xc).
Intuitively, the gradient ascent update using the above formula would encourage the generator to
generate xc with high reward, thus fooling the discriminator. However, REINFORCE is not directly
applicable as the score function SG(xc) is intractable (the distribution pG(xc) is implicitly defined).
A second attempt would replace the discrete sampling step xd ∼ p(xd|xc) with continuous value
approximations [22, 31], which shall enable differentiation. However, the off-the-shelf renderer is
treated as black-box so we do not assume the back-propagation mechanism is implemented there.
Even worse, the discrete variable sampling step is necessary as the off-the-shelf renderer can only
work with discrete voxel maps. Therefore the instance-level gradient is not defined on the discrete
voxel grid, and gradient approximation methods based on continuous relaxations cannot be applied
neither.

C Additional Computational Results

C.1 Implementation Details

Our rendering engine is based on the Pyrender [32] which is built on top of OpenGL. We employ a 3D
convolutional GAN architecture for the generator [55] with a 643 voxel resolution. To incorporate the
viewpoint, the rigid body transformation embeds the 643 grid into a 1283 resolution. We render the
volumes with a RenderNet [37] architecture, with the modification of using 2 residual blocks in 3D
and 4 residual blocks in 2D only. The discriminator architecture follows the design in DCGAN [43],
taking images of 1282 resolution. Additionally, we add spectral normalization to the discriminator
[35] to stablize training.

We employ a 1:1:1 updating scheme for generator, discriminator and the neural renderer, using
learning rates of 2e−5 for the neural renderer and 2e−4 for both generator and discriminator. The
Discriminator Output Matching loss is weighted by λ = 100 over the L2 loss. We found that training
was stable against changes in λ and extensive tuning was not necessary. The binerization distribution
p(xd|xc) was chosen as a global thresholding, with the threshold being distributed uniformly in
[0, 1].
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C.2 Experimental Details

To generate the training data, we illuminate ShapeNet objects fo the three categories Chair, Couch
and Bathtub from two beam light sources. We uniformly sample from all 360◦ of rotation, with an
elevation between 15 and 60 degrees for bathtubs and couches and -30 and 60 degrees for chairs. The
limitation on elevation angle is chosen to generate a data set that is as realistic as possible, given the
object category.

We chose to evaluate the quality of the generated 3D models by rendering them to 2D images and
computing Fréchet Inception Distances (FIDs) [20]. This focuses the evaluation on the observed
visual quality, preventing if from considering what the model generates in the unobserved insides
of the objects. All FID scores reported in the main paper use an Inception network [51] retrained
to classify Images generated with our renderer, classifying rendered images of the 21 largest object
classes in ShapeNet with 95.3% accuracy. In This supplemental material we also show FID scores
using the Inception network trained on ImageNet [10].

C.3 Extended Figures and FID scores

We include a Figure of samples generated by our proposed approach in the unlimited setting,
demonstrating that our approach is capable of generating samples of high visual quality 1. We
additionally report FID scores on a small data set that contains only 500 samples, for each of the three
categories Chairs, Couches and Bathtubs. We also consider a limited viewpoint (LVP) setting for the
chairs dataset where the azimuth rotation is limited to 60◦ in each direction, and elevation is limited
to be between 15 ad 60 degrees, to simulate the viewpoint bias observed in natural photographs.
Results for this set can be seen in Figure 2. We note that the difference between our proposed method
and the baseline in detecting flat surfaces and concaveties is particularly clear in this setting for the
chair data. The FID scores alongside the scores reported in the main paper can be found in Table 1.

Figure 1: Normal Maps of objects generated by IG-GAN on the ’Unlimited’ datasets. The left panel
shows a single sample rendered in different view points, and the right panel shows multiple samples
rendered from a canonical viewpoint.

(a) IG-GAN (Ours) (b) Absorption Only

Figure 2: Results on the chairs LVP dataset. Unlike our method, the baseline can not extract sufficient
information from the data to create chair samples with flat surfaces.
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Table 1: FID scores computed on ShapeNet objects (bathtubs, couches and chairs), using Inception
weights retrained on ShapeNet.

# of Images 500 One Per Model (≈ 3000) Unlimited
Dataset Tubs Couches Chairs Tubs Couches Chairs Tubs Couches Chairs LVP

2D-DCGAN 737.7 540.5 672.8 461.8 354.3 362.3 226.7 210.9 133.2 237.91

Visual Hull 305.8 279.3 183.4 184.6 106.2 37.1 90.1 35.1 15.7 34.5
Absorbtion Only 336.9 282.9 218.2 275.8 78.0 32.8 104.5 25.5 23.8 38.6
IG-GAN (Ours) 187.8 114.1 119.9 67.5 35.8 20.7 44.0 17.8 13.6 20.6

C.4 A real world data set: Chanterelles

We demonstrate that the proposed method is able to produce realistic samples when trained on a
dataset of natural images. Figure 3 shows samples from a model trained on the Chanterelle mushrooms
dataset from Henzler et al. [19]. We prepare the Chanterelle data by cropping and resizing the images
to 1282 resolution and by unifying the mean intensity in an additive way. Note that the background
of the natural images has been masked out in the original open-sourced dataset.

Figure 3: Chanterelle mushroom dataset samples and generated shapes from our model trained on
this dataset.

C.5 Ablation Study

Discriminator output matching We study the effect of the proposed discriminator output matching
(DOM) loss in various scenarios. In Table 2, we report the FID scores on the models trained without
the DOM loss, from this comparison we see that the DOM loss plays a crucial role in learning to
generate high-quality 3D objects. In Figure 4 we can see that that the non-binary volumes sampled
from the generator can be rendered to a variety of different images by OpenGL, depending on the
random choice of threshold. Without the DOM loss, the trained neural renderer simply averages over
these potential outcomes, considerably smoothing the result in the process and losing information
about fine structures in the volume. This leads to weak gradients being passed to the generator,
considerably deteriorating sample quality.

Table 2: Ablation results without discriminator output matching (DOM) when training on
chairs/couches “one per model” datasets. We either fix the pre-trained neural renderer (“Fixed”), or
continuing to train it during GAN training (“Retrained”). The generator samples fed to the discrimi-
nator are rendered using either OpenGL or the neural renderer. For reference, our model is equivalent
to the Retrained OpenGL setup with the addition of the DOM loss and achieves FID scores 20.7/35.8.

OpenGL RenderNet

Retrained 86.4/180.1 74.7/144.8
Fixed 113.7/323.5 103.9/124.6

Another setting from Table 2 shows the discriminator trained using generated samples rendered by
the neural renderer instead of OpenGL. This inherently prevents the mode collapse observed in the
above setting. However, it leads to the generator being forced by the discriminator to produce binary
voxel maps early on in training. This seems to lead to the generator getting stuck in a local optima,
hence deteriorating sample quality.
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Figure 4: Samples from a generator trained without DOM, rendered using the neural renderer on the
continuous sample and OpenGL on various thresholds.

Table 3: Comparisons of neural renderer pre-trainings on different 3D shapes. FIDs are reported for
the ’One per model’ chairs.

Chairs Tables Random

Ours 22.6 20.7 20.4
Fixed 37.8 105.8 141.9

Pre-training We investigate the effect of various pre-trainings of the neural renderer. All other
experiments were conducted with the neural renderer pre-trained on the Tables data from ShapeNet
(see Table 1). As a comparison, we run the proposed algorithm on the chair data using a neural
renderer pre-trained on either the Chair data itself or a simple data set consisting of randomly sampled
cubes. As shown in Table 3, the quality of the results produced by our method is robust to changes in
the pre-training of the neural renderer. In contrast, if we use a fixed pre-trained renderer it produces
reasonable results if pre-trained directly on the domain of interest, but deteriorates significantly if
trained only on a related domain. Note that we assume no access to 3D data in the domain of interest
so in practice we cannot pre-train in this way.

C.6 FID Scores Calculated with Inception Network Trained on ImageNet Classification

In the main paper as well as in the paragraphs above, all FID scores were calculated using an Inception
network which was trained to classify gray-scale ShapeNet renders that look similar to the training
data used for all of our models. Below we report, for the same set of experiments, FID scores
calculated using the traditional ImageNet trained Inception network in tables 5, 4 and 6.

D A note on Emission-Absorption

We chose to compare to the Absorption-only (AO) model from Henzler et al. [19] and not the
Emission-Absorption (EA) model. The EA model was designed to incorporate color information
into the differentiable rendering engine. In addition to the occupancy/absorbtion value generated at
each voxel, this model also generates one or more emission values at each voxel that can represent
either 3-channel color, or a single grey-scale value. The focus of our paper was only on shape,

1A fair comparison to 2D-DCGAN is impossible, as the generator is trained on LVP (Limited View Point)
data, but to facilitate easy comparison all FID evaluations are computed with same test data (which includes
views from all 360◦).

Table 4: FID scores computed on ShapeNet objects (bathtubs, couches and chairs), using original
Inception weights without retraining.

# of Images 500 One Per Model (≈ 3000) Unlimited
Dataset Tubs Couches Chairs Tubs Couches Chairs Tubs Couches Chairs LVP

2D-DCGAN 356.9 324.6 291.9 211.0 156.5 196.8 210.1 117.8 78.8 101.51

Visual Hull 117.3 130.0 153.2 66.5 78.7 47.3 29.7 41.4 22.0 36.5
Absorbtion Only 117.6 115.9 110.7 74.3 70.3 46.6 37.6 36.6 31.4 41.8
IG-GAN (Ours) 95.1 91.4 131.4 41.1 36.5 32.1 23.4 18.6 22.6 29.2

5



Table 5: Ablation results without discriminator output matching (DOM) when training on
chairs/couches “one per model” datasets. We either fix the pre-trained neural renderer (“Fixed”), or
continuing to train it during GAN training (“Retrained”). The generator samples fed to the discrimi-
nator are rendered using either OpenGL or the neural renderer. For reference, our model is equivalent
to the Retrained OpenGL setup with the addition of the DOM loss and achieves FID scores 32.1/36.5.
FID scores calculated using an Inception network trained on ImageNet.

OpenGL RenderNet
Retrained 93.6/146.6 58.1/88.2

Fixed 149.3/238.6 61.6/100.0

Table 6: Comparisons of neural renderer pre-trainings on different 3D shapes. FIDs are reported for
the ’One per model’ chairs. FID scores calculated using an Inception network trained on ImageNet.

Chairs Random Tables
Ours 32.7 31.4 32.1
Fixed 43.0 84.4 69.5

however, leaving color generation for future work. Thus the underlying ShapeNet voxel data used
in our experiments does not have any color channel information, and consists of only a single 0-1
occupancy value for each voxel. Therefore, including the additional emission value would only result
in providing the EA model additional freedom that it should not use when modeling the data. In the
following we show that if we assume that the model generates only a single occupancy channel and
the emitted color is fixed globally, then the EA model naturally reduces to the AO model.

In Henzler et al. [19] the expression

ρEA(v) =
∑nz

i=1 va,ive,i
∏i
j=1(1− va,j)∑nz

i=1 va,i
∏i
j=1(1− va,j) + ε

1− nz∏
j=1

(1− va,j)


is used for the Emission-Absorption model, where ve,j denotes the emission coefficient, ve,j the
absorption, nz the number of voxels along the chosen dimension and the index j refers to the j-th
occupancy of the 3D model along a straight line through the volume. The regularization parameter
ε is chosen small to numerically stabilize the quotient. In the case of data generated from shape
information alone, we can consider that all objects are perfectly white, which would equate to
ve,j = 1. In this case, the quotient∑nz

i=1 va,ive,i
∏i
j=1(1− va,j)∑nz

i=1 va,i
∏i
j=1(1− va,j)

naturally reduces to one, leaving the expression

ρEA(v) = 1−
nz∏
j=1

(1− va,j),

for the EA model, which is identical to the AO model. Hence, the two imaging models are the same
in our setting of where images are obtained from 3D shapes with a single globally emitted color.

E Random Samples from Each Model Trained on Each of the Datasets 1

The rest of the supplemental contains a set of tables where each table contains random samples from
one of the models trained on one of the datasets. For each set of random samples we show black and
white renders as well as normal map renders. In each figure the view angle is held fixed across all
samples in a single row, but each image represents a completely independently sampled underlying
3D model. Note that we cannot show normal map renderers for 2D-DCGAN generations since the
2D-DCGAN only generates images, not 3D models. At the end we also show samples from the
dataset rendered in the same way for comparison.

1This document does not contain the full supplemental material due to size restrictions. Full material available
at https://figshare.com/s/56084c4d7df8f57f15d9
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(a) 2D-DCGAN (b) Absorption Only

(c) Visual Hull (d) IG-GAN (Ours)

Figure 5: Samples from models trained on the Chairs data in the ’one sample per object’ setting
(6667 training images).

7



(a) Absorption Only (b) Visual Hull

(c) IG-GAN (Ours)

Figure 6: Samples from models trained on the Chairs data in the ’one sample per object’ setting
(6667 training images), r,endered as normal maps.
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