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Abstract

In this paper we introduce the first scalable training technique to utilize an off-
the-shelf non-differentiable renderer to train a 3D generative model from only
unstructured 2D data. To account for the non-differentiability, we introduce a proxy
neural renderer to match the output of the non-differentiable renderer. We further
propose discriminator output matching to ensure that the neural renderer learns to
appropriately smooth over the non-differentiable rasterization step in the discrete
renderer. We show that our model can consistently learn to generate better shapes
than existing models when trained with exclusively unstructured 2D images. The
approach works with any rendering algorithm and hence opens possibilities to take
advantage of the photo-realistic industrial renderers built by the graphics industry.

1 Introduction

Generative adversarial networks (GANs) have produced impressive results on 2D image data [12, 1].
However, many visual applications, such as gaming, require 3D models as inputs instead of just
images, and directly extending existing GAN models to 3D, requires access to 3D training data [31,
26]. This data is expensive to generate and so exists in abundance only for only very common classes.
We would hence like to be able to generate 3D models while training with only 2D image data which
is much more widely available.

Our interest is in creating 3D models for gaming applications which typically rely on 3D meshes, but
direct mesh generation is not ammenable to generating arbitary topologies since most approaches
are based on deforming a template mesh. So we instead choose to work with voxel representations
because they can represent arbitrary topologies, can easily be converted to meshes using the marching
cubes algorithm, and can be made differentiable by representing the occupancy of each voxel by a
real number ∈ [0, 1] which identifies the probability of voxel occupancy.

In order to learn with an end-to-end differentiable model, we need to differentiate through the process
of rendering the 3D model to a 2D image, but the rasterization step in rendering is inherently non-
differentiable. As a result, past work on 3D generation from 2D images has focused on differentiable
renderers that are hand built from scratch to smooth over this non-differentiable step in various ways.
This prevents the use of standard photo realistic industrial renderers created by the gaming industry
(e.g. UnReal Engine, Unity) because they cannot easily be made differentiable. To enable the use of
such renderers, we must deal with two aspects of the rendering process that are non-differentiable: (1)
the rasterization step inside of the renderer is inherently non-differentiable as a result of occlusion and
(2) sampling the continuous voxel grid to generate a mesh is also not differentiable. This second step
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Figure 1: The architecture and training setup for IG-GAN.

is required because typical industrial renderers take a mesh as input and we can easily convert a binary
voxel grid to a mesh, but continuous voxel inputs do not have a meaningful mesh representation. So
rendering a continuous voxel grid using an off-the-shelf renderer requires first sampling a binary
voxel grid from the distribution defined by the continuous voxel grid, generating a mesh from this
grid and feeding the mesh to the discrete renderer.

In this paper we introduce the first scalable training technique to utilize an off-the-shelf non-
differentiable renderer to train a 3D generative model from only unstructured 2D data. Key to
our method is the introduction of a proxy neural renderer [20] which directly renders the continuous
voxel grid generated by the 3D generative model. Our method addresses the two challenges of the
non-differentiability of the off-the-shelf render as follows:

Differentiate through the Neural Renderer: The proxy neural renderer is trained to match the
rendering output of the off-the-shelf renderer given a 3D mesh input. This allows back-propagation
of the gradient from the GAN discriminator through the neural renderer to the 3D generative model,
enabling training using gradient descent.

Discriminator Output Matching: In order to differentiate through the voxel sampling step we
also train the proxy neural renderer using a novel loss function which we call discriminator output
matching. This accounts for the fact that the neural renderer can only be trained to match the
off-the-shelf renderer for binary inputs, which leaves it free to generate arbitrary outputs for the
(typically) non-binary voxel grids created by the generator. We constrain this by computing the
discriminator loss of an image rendered by the neural renderer when passed through the discriminator.
This loss is matched to the average loss achieved by randomly thresholding the volume, rendering
the resulting binary voxels with the off-the-shelf renderer, and passing the resulting image through
the discriminator. This addresses the instance-level non-differentiability issue and instead targets
the differentiable loss defined on the population of generated discrete 3D shapes, forcing the neural
renderer to generate images which represent the continuous voxel grids as smooth interpolation
between the binary choices from the perspective of the discriminator.

A detailed discussion on the relationship between our work and past work such as [19, 28, 4, 15, 14,
25, 5, 8, 11, 3, 6, 7, 17, 22, 21, 16] can be found in Section A of the supplemental material.

2 IG-GAN

We wish to train a generative model for 3D shapes such that rendering these shapes with an off-
the-shelf renderer generates images that match the distribution of 2D a training image dataset. The
generative model Gθ(·) takes in a random input vector z ∼ p(z) and generate a continuous voxel
representation of the 3D object xc = Gθ(z). Then the voxels xc are fed to a non-differentiable
renderering process, where the voxels first are thresholded to discrete values xd ∼ p(xd|xc), then the
discrete-value voxels xd are renderred using the off-the-shelf renderer (e.g. OpenGL) y = Rd(xd).
In summary, this generating process samples a 2D image y ∼ pG(y) as follows:

xc ∼ pG(xc)⇔ z ∼ p(z),xc = Gθ(z),

y ∼ pG(y)⇔ xc ∼ pG(xc),xd ∼ p(xd|xc),y = Rd(xd).
(1)
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Like many GAN algorithms, a discriminator Dφ is then trained on both images sampled from the
2D data distribution pD(y) and generated images sampled from pG(y). We consider maximising
e.g. the classification-based GAN cross-entropy objective when training the discriminator

max
φ
Ldis(φ) := EpD(y) [logDφ(y)] + EpG(y) [log(1−Dφ(y))] . (2)

The generator Gθ(·) is trained by e.g. maxθ Lgen(θ) := EpG(y) [logDφ(y)] . Unfortunately, the
generation process (1) involves sampling discrete variable xd thus making the generator’s loss non-
differentiable w.r.t. θ. An initial solution would be to use the REINFORCE gradient estimator [30]:

∇θLgen(θ) = EpG(xc)

[
Ep(xd|xc) [logDφ(Rd(xd))]SG(xc)

]
, SG(xc) = ∇θ log pG(xc). (3)

Intuitively, the gradient ascent update using (3) would encourage the generator to generate xc with
high reward, thus fooling the discriminator. But REINFORCE is not applicable because the score
function SG(xc) is intractable and, furthermore, we cannot use a continuous relaxation [10, 18]
because the off-the-shelf renderer does not support back-propagation. See the supplemental material,
Section B, for further discussion of these issues.

To address the non-differentiability issues, we introduce a proxy neural renderer ỹ = Rϕ(xc) for
rendering continuous voxel representations as a pathway for back-propagation in generator training.
To encourage realistic renderings that are close to the results from the off-the-shelf renderer, the
neural renderer is trained to minimise the `2 error of rendering on discrete voxels:

L2(ϕ) = EpG(xc)p(xd|xc)
[
||Rϕ(xd)−Rd(xd)||22

]
. (4)

If the neural renderer matches closely with the off-the-shelf renderer on rendering discrete voxel
grids, then we can replace the non-differentiable renderer Rd(·) in (3) with the neural renderer Rϕ(·):

∇θLgen(θ) ≈ EpG(xc)

[
Ep(xd|xc) [logDφ(Rϕ(xd))]SG(xc)

]
. (5)

However, we must still address the intractability of SG(xc). Notice that the neural renderer can take in
both discrete and continuous voxel grids, therefore the instance-level gradient∇x logDφ(Rϕ(x)) is
well-defined and computable for both x = xd and x = xc. This motivates the “reward approximation”
approach which approximates Ep(xd|xc) [logDφ(Rϕ(xd))] in (5) with logDφ(Rϕ(xc)), sidestepping
the intractability of SG(xc) via the reparameterisation trick [27, 13, 24]:

∇θLgen(θ) ≈ EpG(xc) [logDφ(Rϕ(xc))∇θ log pG(xc)]
= Ep(z)

[
∇θGθ(z)∇xc logDφ(Rϕ(xc))|xc=Gθ(z)

]
= ∇θEpG(xc) [logDφ(Rϕ(xc))] := ∇θL̃gen(θ).

(6)

To better facilitate this reward approximation, we train the neural renderer with a novel loss function
which we call discriminator output matching (DOM). Define F (·) = logDφ(·), the DOM loss is

LDOM(ϕ) = EpG(xc)p(xd|xc)
[
(F (Rd(xd))− F (Rϕ(xc)))2

]
. (7)

The optimal neural renderer achieves logDφ(Rϕ∗(xc)) = Ep(xd|xc) [logDφ(Rd(xd))] with enough
network capacity. It forces the neural renderer to preserve the population statistics of the discrete
rendered images defined by the discriminator. Therefore to fool the discriminator, the 3D generative
model must generate continuous voxel grids which correspond to meaningful representations of the
underlying 3D shapes. In practice the neural renderer is trained using a combined loss function

min
ϕ
Lrender(ϕ) := L2(ϕ) + λLDOM(ϕ). (8)

We name the proposed method inverse graphics GAN (IG-GAN), as the neural renderer in back-
propagation time “inverts” the off-the-shelf renderer providing useful gradients for the 3D generative
model training. The model, visualised in Figure 1, is trained end-to-end. To speed up the generative
model training, the neural renderer can be pretrained on a generic data set, like tables or cubes.

3 Results 2

Experimental Setup We evaluate our model on synthetic datasets generated from 3D models of the
Chairs, Couches and Bathtubs categories of ShapeNet [2] objects. For each category, we generate

2Implementation details, further experiments and ablations studies can be found in the Supplemental Material.
Full supplemental material available on https://figshare.com/s/56084c4d7df8f57f15d9
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# of Images One Per Model (≈ 3000) Unlimited
Dataset Tubs Couches Chairs Tubs Couches Chairs

2D-DCGAN [23] 461.8 354.3 362.3 226.7 210.9 133.2
Visual Hull [5] 184.6 106.2 37.1 90.1 35.1 15.7

Absorbtion Only [8] 275.8 78.0 32.8 104.5 25.5 23.8
IG-GAN (Ours) 67.5 35.8 20.7 44.0 17.8 13.6

Table 1: FID scores computed on ShapeNet objects (bathtubs, couches and chairs). Lower is better.

(a) Absorption Only (b) IG-GAN (Ours)

Figure 2: Samples generated by (a) the AO baseline and (b) our model on the ’One per model’ setting.
The samples from the VH baseline is visually similar to those from the AO baseline. Our method is
able to recognize concavities correctly, leading to realistic samples of bathtubs and couches.

one small data set by sampling a single fixed view point per 3D object (’One per Model’) and a
second, larger one, by rendering a different viewpoint for the same 3D object at each training epoch
(’Unlimited’). We evaluate the quality of the generated 3D models by rendering them to 2D images
and computing Fréchet Inception Distances (FIDs) [9], using an Inception network [29] trained to
classify ShapeNet Images generated with our renderer. We compare to the visual hull model from
Gadelha et al. [5] that uses a smoothed version of object silhouetts for differentiable rendering and
against the absorption model from Henzler et al. [8] which assumes voxels absorb light based on their
fraction of occupancy.

Quantitative Evaluation We can see in Table 1 that our approach (IG-GAN) significantly out-
performs the baselines on all datasets. The largest gain is obtained on the data sets containing many
concavities, like couches and bathtubs. Furthermore, the advantage of the proposed method becomes
more significant when the dataset size is restricted. Since our method can more easily take advantage
of the lighting and shading cues provided by the images, we believe it can extract more meaningful
information per training sample, hence producing better results in these settings. In the Unlimited
dataset setting the baseline methods seem to be able to mitigate some of their disadvantage by simply
seeing enough views of each training model, but still our approach generates considerably better FID
scores even in this setting.

Qualitative Evaluation We can see in Figure 2 that the generated 3D shapes are superior to the
baselines. This is particularly evident in the context of concave objects like bathtubs or couches.
Here, generative models based on visual hull or absorption rendering fail to take advantage of the
shading cues needed to detect the hollow space inside the object, leading to e.g. seemingly filled
bathtubs3. Our approach, on the other hand, successfully detects the interior structure of concave
objects using the differences in light exposure between surfaces, enabling it to accurately capture
concavities and hollow spaces.

On the chair dataset, the advantages of our proposed method are evident on flat surfaces. Any uneven
surfaces generated by mistake are promptly detected by our discriminator which can easily detect
differences in light exposure, forcing the generator to produce clean and flat surfaces. The baseline
methods however are unable to render such impurities in a way that is evident to the discriminator,
leading to generated samples with grainy and uneven surfaces. A large selection of randomly
generated samples from all methods can be found in the supplemental material.

3This shortcoming of the baseline models has already been noticed by Gadelha et al. [5].
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