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Figure 1: 1b shows the gradients calculated for the icosahedron in 1a for a horizontal translation. 1c
shows Cornell box scene with global illumination and Russian roulette termination. 1d has larger σ,
resulting in more blur. 1e has smaller γ, resulting in less transparency.

Abstract

Recently, viewing computer vision as an inverse rendering problem has led to a
growing interest in differentiable rendering. We introduce a novel differentiable
path tracing algorithm where discontinuities in the rendering process are regularized
through blurring of the geometry. Our differentiable renderer implements full global
illumination and has parameters for controlling the regularization, which allows
for some control over the smoothness of the loss landscape. We successfully apply
our system to solve several examples of challenging inverse rendering optimization
problems that involve more complex light transport scenarios that cannot be handled
by rasterization-based differentiable renderers.

1 Introduction

The field of computer vision has seen significant advancements due to the proliferation of machine
learning (ML) techniques and specialized neural networks architectures [1] [2]. However, many of
these modern techniques focus only on the 2D image, and are agnostic to the underlying 3D world and
geometry that are behind the image formation process. Inverse graphics is the process of obtaining a
detailed description of a 3D scene from an image. One technique that is useful in inverse graphics is
differentiable rendering, which allows for the computation of gradients through the rendering process
[3] [4]. These gradients can then be used to optimize estimates of scene parameters to closely match
a target image.
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In recent years, differentiable rendering has been increasingly used in different ML applications such
as mesh reconstruction [5] [6] and lighting reconstruction [7]. The key idea being that incorporating
an explicit process converting 3D geometry into 2D images may allow for better generalization.

Differentiable rendering involves modifying the rendering process or adding additional computations
to handle discontinuities in the computation of pixel colour, which would otherwise prevent useful
gradients from being calculated. There are two main methods for rendering images, rasterization and
ray tracing, both of which have been explored for differentiable rendering.

Rasterization uses multiple matrix multiplications accelerated by dedicated hardware (GPU) to
efficiently project the geometry in the scene onto the plane defined by the camera position, direction
and field of view. This comes at the cost of realism since light paths consisting of multiple bounces
are ignored. Several works such as SoftRas [5] [6] and DIB-R [7], and Neural Mesh Renderer [8]
have implemented rasterization-based differentiable renderers and applied them to ML applications
such as mesh reconstruction. Earlier works look at differentiable rendering for pose estimation [9]
[10].

On the other hand, ray tracing produces a detailed, physically accurate image by simulating light rays
propagating through a scene. Images produced using ray tracing are able to capture complex lighting
effects accurately, at the cost of more computation time. Some differentiable rendering techniques for
ray tracing have appeared in the graphics literature in recent years [11] [12] [13] [14] [15] [16], but
their high computational costs have limited their use in ML applications.

While the rendering process is trivially differentiable with respect to the material properties when
using a simple continuous material model, getting gradients with respect to the scene geometry
requires more work. In traditional rendering algorithms, there are essentially two discrete, non
differentiable steps that need to be modified in order to make the rendering differentiable with respect
to geometry: Discontinuities at the edges of geometry, and determination of the surface closest to the
camera.

Contributions In this work, we present a novel formulation for differentiable path tracing based
on an extension of the probabilistic view of triangle visibility presented by [5] that models global
illumination effects while allowing gradient computation with respect to both geometry and material
properties. We implement this formulation in Python using the PyTorch library to allow for simple
integration with other common machine learning libraries and pipelines. We apply our technique
to several example inverse rendering problems involving complex light transport effects such as
shadows, indirect lighting, reflections, and optimization of object and vertex positions. Additionally,
we show results on optimizing for camera distribution effects such as depth of field and motion blur.
To the best of our knowledge our method is the first to support such effects.

2 Method

We take an approach similar to SoftRas [6] for handling the edge and depth ordering discontinuities,
but extend their work to a path tracing setting, with multiple bounces and with support for camera
distribution effects. An advantage to our approach compared to other global illumination differentiable
renderers (such as [11] [12]) is that it does not require casting additional rays or taking additional
samples to calculate gradients.

Edge Discontinuity We view triangles as a probability distribution in 3D space, rather than just in
the image plane as proposed in SoftRas. With this approach, a ray can intersect with a triangle in
the entire plane of triangle. The probability of intersection with the triangle in the triangle’s plane at
some point x in 3D space is given by Equation 1:

p(x, σ) = sigmoid
(

sign(d(x))
d(x)2

σ

)
(1)

where d(x) is the signed distance (positive inside) to the nearest edge of the triangle (in the plane of
the triangle) and σ is a value used to control the edges’ sharpness. This results in the triangle having
the highest probability inside the triangle, p(x) = .5 at an edge, and decays asymptotically to 0 as
the distance to the edges tends to infinity. d(x) is thus a smooth and differentiable function of the
vertex positions of the triangle, which is necessary for the computation of gradients with respect to
the vertex positions.
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Depth Ordering Discontinuity To handle the discrete operation that results from determining the
surface nearest to the camera, we again use a similar approach as taken in SoftRas [6]. We determine
the colour of pixel Ij using a weighted sum to blur together the contributions from all surfaces along
the path of the ray (Equation 2). The weight Wk of surface k is based on its distance to the camera zk
and the probability of the triangle at the point of intersection p(xk, σ) in its plane (Equation 3). γ
controls the weighting of the surfaces. ε is a small constant for numerical stability. This weighted sum
removes the discrete operation of determining the closest surface and is a form of order-independent
transparency [17].

Ij =
∑
k

Wk S(xk) (2) Wk =
p(xk, σ) exp (zk/γ)∑

j p(xj , σ) exp (zj/γ) + exp(ε/γ)
(3)

However, computing the shading S(xk) for every triangle k intersected by a given ray requires casting
additional rays to determine the direct and indirect lighting. Doing this for multiple surfaces, for
multiple bounces, would result in an exponential increase in the number of rays being cast. This is
undesirable as the computation power needed would explode. We propose a numerical method to
approximate this sum while using a constant number of rays.

Tracing Subsequent Bounces We use importance sampling [18] to estimate Equation 2. We
importance sample one surface based on the weight of its contribution Wk in the sum, and trace
additional rays for determining shading only for this surface. Since we pick only a single surface to
compute shading for, we are able to keep a constant number of rays per bounce.

Explicit Connections and Shadows To reduce noise, we implement explicit path tracing. For each
shading point, an emitter is selected with a uniform probability. A point on the emitter is selected
uniformly over its non blurred area. A shadow ray is then traced to determine visibility between
the shaded point and the selected point on the emitter. Visibility is computed as transmission along
the shadow ray: 1−

∏
k(1− p(xk, σ)), for intersections k that occur between the shaded point and

the emitter. This factor attenuates the emitted light Le, before computing the shading using the
Bidirectional Reflectance Distribution Function (BRDF). We use a mixture BRDF model that has
both diffuse (Lambertian) and specular (Phong) components [19]. Since visibility in these shadow
rays is differentiable, this allows computing gradient signals from the shadow of an object.

Textures Textures are stored as H x W x 3 tensor for each mesh. When an intersection point is
found, we sample the texture using the UV coordinates of the triangle’s vertices to get an albedo
value. The values stored in the texture map are naturally differentiable with no special attention
needed.To handle areas outside of triangle, the texture is wrapped to cover the extended area.

2.1 Camera Effects

Camera effects can be added to rendered images to simulate features that arise from the physical
properties of a camera and lens. We implement two of the most common camera effects differentiably,
namely depth of field and motion blur. To our knowledge, ours is the first work to include differentiable
camera effects.

Depth of Field Depth of field is an effect that results from the focal length of the lens and the
size of the aperture in physical cameras. It results in objects far away from the focal plane being
blurred. This effect is simulated by jittering the origin of the rays traced from the camera in the plane
perpendicular to the view direction, while ensuring that the rays intersect the focal plane at the same
point as if the origin had not been altered. Several of these jittered images are rendered and averaged
together to achieve the effect. This averaging operation is naturally differentiable.

Motion Blur Motion blur is an artifact that occurs in images when objects are moving due to the
finite shutter speed of the camera. It results in a drawn out blur of the object along the direction of
motion. Motion blur is achieved by assigning objects a velocity, sampling the scene at multiple time
steps and averaging the resulting rendered images. This averaging operation is naturally differentiable.
We limit our implementation to only linear velocities.
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(a) Initial (b) Final (c) Target

Figure 2: The translation of a triangle (not visible
in image) is optimized so that its shadow matches
the placement of a reference shadow

(a) Initial (b) Final (c) Target

Figure 3: The rotation of a white cube is opti-
mized such that the indirect light matches the
reference. σ is decayed over time.

(a) Initial (b) Final (c) Target

Figure 4: The velocity and geometry of an icosa-
hedron are optimized from a coarse initial guess.

(a) Initial (b) Final (c) Target

Figure 5: The aperture size of the simulated cam-
era is optimized for, causing a depth of field effect.

3 Results

We implemented our differentiable renderer in Python making use of the PyTorch library [20]. Using
PyTorch conferred several advantages: parallelization on the GPU by implementing ray tracing as
tensor operations, built-in automatic differentiation, optimization tools, and easy integration into
Python based machine learning pipelines. For optimization, we used Mean Square Error (MSE) loss
and the Adam optimizer [21] available in PyTorch.

During training, we render images with low samples per pixel (SPP) counts, which results in noisy
but fast estimates. These renders are then compared to the reference image which is generated with
a much higher SPP count. Optimizing based on noisy data has been shown to not be a significant
problem as long as there is sufficient data [22], and we find that this holds true in our application. In
Figures 1c - 1e, we present example images which show the effects of modifying the edge blurring
parameter σ and the depth blurring parameter γ. As γ decreases, the closer surfaces are weighted
more heavily. As σ decreases, the blurring of the triangles decreases. We observe that starting with
larger values for these parameters and decaying them leads to a more robust optimization. This has
the effect of smoothing the gradients earlier on in the optimization and can help avoid local minima.

In Figure 2 and Figure 3, we present examples that demonstrate higher order light transport effects that
could not be done with simple rasterization. In Figure 2, the only gradient signal for the translation of
the triangle is from the shadow of the triangle. In Figure 3, one bounce indirect light coming from the
red and green walls has a significant contribution to the appearance of the white cube. By contrast,
rasterization-based differentiable rendering does not typically allow for gradients to be computed
with respect to shadows or indirect lighting.

In Figure 4 and Figure 5, we present some optimizations of scenes involving camera effects. In Figure
4, the velocity and geometry of the object are optimized simultaneously. In Figure 5, the aperture size
of the camera is adjusted from a small initial value to a large one, which results in an out of focus
blur for objects offset from the focal plane.

4 Conclusion and Future Work

We present a novel differentiable approach to path tracing. We apply our approach to solve several
inverse rendering problems involving higher order light transport effects. In future work, we would
like to improve the both the time and memory efficiency of our differentiable renderer, and increase
the number of triangles that can be handled, as these are the current critical limitations. We would
also like to further investigate the impact of σ and γ on the characteristics of the loss landscape.
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