
System Level Differentiable Simulation of Radio
Access Networks

Dmitriy Rivkin
Samsung Electronics

Montreal, QC, Canada
d.rivkin@samsung.com

Abstract

We present a differentiable simulator of telecommunications processes, specifically
cellular radio access networks (RAN). The simulator is differentiable with respect
to the state of individual phones and other key variables which are of interest in a
variety of network optimization tasks. This is complicated by the fact that some
of these quantities are discrete variables, a challenge which we overcome using
a relaxation technique. As a result, we can start to consider a range of classi-
cally difficult network configuration tasks using modern learning and optimization
methods.

1 Introduction

This paper considers the configuration and tuning of telecommunication networks using methods
from differentiable simulation. Such optimization is a demanding problem that is often achieved by an
ensemble of heuristic and/or manually-intensive approaches. This problem is increasingly important
as the demand for mobile data and the complexity of the attendant networks is steadily increasing
[1]. In tuning these complex systems, network operators must solve a wide variety of optimization
tasks. Some of the most challenging of these tasks are system-level optimization problems, where
large sections of the network (hundreds of cells, thousands of users) must be optimized jointly. Often-
studied system-level optimization problems include those of cell (tower) placement, user-to-cell
assignment, and power optimization by turning off under-utilized cells. Algorithms for solving these
problems are manifold and evaluated in simulation prior to real-world deployment. Even once an
algorithm is deployed in the fiel a simulator is still important for diagnosis, tuning, and control (e.g.
model predictive control).

Differentiable simulation has the potential to be extremely valuable for two key reasons. First,
differentiability of the simulation parameters can help fit the simulator to real data, increasing the
fidelity of the model and increasing the efficacy of MPC-based techniques. Second, if gradients
are available for the quantities being optimized, it can significantly increase the efficiency of any
optimization algorithms. In this paper, we focus primarily on the second goal of providing gradients
for quantities of interest to optimization. However, our simulator is designed to work with empirically
measured signal-strength maps, which should make it well-adapted to leverage available data.

In this paper, we first present the design of a differentiable system level network simulator imple-
mented in PyTorch, then demonstrate how it can be used to tackle some key optimization problems.
To our knowledge, this is the first implementation of a differentiable system-level RAN simulator.

2 Background

While differentiable simulators have rapidly become important tools is some parts of machine learning,
they are seldom employed in the telecommunications literature. Several types of simulation are

Workshop on Differentiable Vision, Graphics, and Physics in Machine Learning at NeurIPS 2020.



typically used in the cellular communications literature, and can be roughly classified according to the
degree of granularity with which they execute the simulation [2, 3]. A prototypical example is “NS3”,
a discrete event simulator that simulates network behaviour at separate uniform discrete time steps.
While “NS3” can faithfully model many aspects of a network’s behaviour, it depends critically on the
step size of the discretization and can be very computationally demanding when modeling a complex
network, making several kinds of optimization so demanding that they are infeasible [4, 5, 6].

In the particular case of cellular RANs (such as LTE, or 5G) addressed in this paper, the key issue we
address is the interaction between the radios on individuals phones and the network as a whole. A
RAN is a collection of radio-frequency antennas connected to the internet with a fiber-optic back-
haul [7]. These antennas communicate with user phones (known as “user equipment” or “UEs”) over
the radio spectrum in order to deliver data services to end users. Each individual antenna is referred
to as a “cell", and each cell has a limited bandwidth and range. If a UE has a poor connection quality
(i.e. low signal to interference plus noise ratio, SINR) to the cell, it will use up more bandwidth to
transmit the same amount of data.

3 System model

The performance metric we aim to simulate is packet loss. In order to compute this, we need to
know where the UEs are and how much data each one is trying to receive, which cells they are
connected to, the SINR of the connection between each UE and its serving cell, and the bandwidth
of the cells. Let us discuss each of these in turn. First, we discretize the world into a square grid
with m rows and n columns. This is motivated by the fact that SINR is primarily a function of the
position of the UE relative to the cell. Thus, for each cell, we can build an SINR map that describes
the quality of the connection between a cell and UE in the area. In fact, UEs measure SINR to
nearby cells as a normal part of network operation, so we can reasonably expect operators to have
detailed SINR maps on hand. UE position is also modelled on the discretized grid. Since each UE can
only exist in one place at a time, the position of the UE on the grid is a discrete variable. Similarly,
each UE can only be assigned to a single cell, meaning that ue-cell assignment is also a discrete
variable. However, we are still interested in obtaining gradients for these variables. Therefore, we
relax these “locality constraints" on position and assignment in the simulator, allowing each UE to
be assigned to multiple cells at once, and be distributed throughout multiple places on the map. We
will show later how we can re-introduce these constraints, and use the gradients from the relaxed
formulation to compute gradients for the discrete variables. In fact, with this relaxation we combine
all information about UE position, demand, and assignment into a single four-dimensional vector
D of shape (m,n, nues, ncells) where each element describes how much traffic each UE is trying to
receive through each cell at each point in space.

In order to compute packet loss, we allocate cell bandwidth to each UE in proportion to the demand
of the UE. For example, if two UEs, with demand 1 and 2 respectively, are connected to a cell with
capacity 9, then the first UE would be allocated a bandwidth of 3 and the second a bandwidth of 6.
More concretely, we first compute the total load demand assigned on each cell, Dj :

Dj =
∑
x,y,i

Dx,y,i,j , (1)

where x and y are the row and column indices of the map, i is the UE index, and j is the cell index.
We then allocate bandwidth, B:

Bx,y,i,j = Dx,y,i,j
Bj

Dj
, (2)

where Bj is the bandwidth available to each cell. We then compute the amount of data that can be
transmitted through a certain bandwidth using the Shannon-Hartley theorem:

CSH = Blog2(1 + SINR), (3)

where CSH is the theoretical maximum capacity for data transmission, B is the bandwidth allocated
to the UE. According to equation 3, a link with very high SINR could transmit a lot of data even if the

2



bandwidth is low. In practical systems, however, there is a limit on how much data can be transmitted
even with excellent SINR. Thus, we cap the maximum capacity at B:

C = max(CSH , B) (4)

where C is the capacity used in simulation. System level packet loss (PL) is then computed as:

PL =

∑
x,y,i,j min(Bx,y,i,j − Cx,y,i,j , 0)∑

x,y,i,j Dx,y,i,j
(5)

The computation outlined above, when implemented in an automatic differentiation framework, can
provide gradients of PL with respect to each element of D and Bj .

3.1 Locality constraints

In order to re-introduce locality constraints (i.e. that each UE can only be in a single place and
connected to a single cell) we augment the automatic differentiation framework with a new differen-
tiable function, equipped with both forward and backward (i.e. back-propagating) methods. In the
forward method, this function accepts UE positions (Pi), demands (Di), and cell assignments (Aij)
and returns Dx,y,i,j . The positions are snapped to map grid, with xi and yi representing the indices
of grid square to which the UE position has been snapped.

ai = argmax
j

Aij , Dxi,yi,i,ai
= Di. (6)

Note that since we apply the argmax operation to Aij to compute the assignment, the constraint
that each UE can only be assigned to a single cell is enforced. The assignment is expressed as a
nue x ncell matrix to conform to the shape of the gradient, which is defined between each UE-cell
pair. Since equation 6 uses argmax and indexing operations, the gradients of which have no standard
definition, our we must also define a custom backward method. This method accepts the gradients
∇Dx,y,i,j

and returns ∇Pi
, ∇Aij

, and ∇Di
. Please note that all gradients are of packet loss, but this

is omitted from the notation to increase legibility.

∇Pi,x
= ∇Dxi+1,yi,i,Ai

−∇Dxi−1,yi,i,Ai
, (7)

∇Pi,y
= ∇Dxi,yi+1,i,Ai

−∇Dxi,yi−1,i,Ai
, (8)

∇Di
= ∇Dxi,yi,i,Ai

, (9)

∇Aij =

∑
xy∇Dx,y,i,j

mn
. (10)

The gradients with respect to UE position (equations 7 and 8) are obtained from the difference of
gradients in the neighboring grid squares. Gradients with respect to UE demand (equation 9) are
equal to the gradient of D at the UEs position and current assignment. Gradients with respect to
assignment (equation 10) are obtained by taking the mean value of the gradient over the entire map.

4 Optimization examples

To verify that the gradients produced by our simulator are useful for optimization we tackle two
optimization problems. The first is the UE-cell assignment problem where UE positions and load
demands are fixed, and the goal is to assign each UE to a cell so as to minimize packet loss. The
second is the problem of finding a challenging spatial UE load distribution, where we strive to place
UEs so that the packet loss is maximized. The first problem serves as a test of the utility of the cell
assignment gradients, while the second tests the gradients of UE position.

3



0 1000 2000 3000 4000 5000
optimizer iterations

0.2

0.3

0.4

0.5

0.6

0.7

0.8

pa
ck

et
 lo

ss

optimized
strongest signal heurisitic

(a) UE-cell assignment.

0 1000 2000 3000 4000 5000
optimizer iterations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

pa
ck

et
 lo

ss

(b) Difficult load scenario finding.

Figure 1: Optimization curve showing packet loss as a function of iteration number. Optimization is
performed ten times. Red line shows mean performance, pink shows (min, max) range. In panel (a)
the blue line is the packet loss obtained by assigning each UE to the cell with which it has the best
signal quality, an industry-standard heuristic.

UE-cell assignment We initialize each element of Aij with random sample from a unit normal
distribution, then optimize Aij so as to minimize packet loss using Adam (with learning rate = 0.01).
The resulting learning curve is presented in figure 1(a), where the process is repeated ten times with
different random initializations. As expected, we obtain a decreasing learning curve, indicating that
our gradients are indeed useful in performing optimization. As a baseline, figure 1(a) also plots the
packet loss that would be attained if each UE was assigned to the cell to which is has the best signal
strength, and our optimization approach outperforms this industry-standard heuristic.

Difficult load scenario finding Given a load balancing algorithm, it is useful to find load distribu-
tion scenarios where that algorithm performs poorly, so that it may be improved. Since our simulator
is differentiable with respect to the position of UEs, we can use it to search for a worst case scenario
for a given load balancing algorithm. To demonstrate this, we adopt the maximum signal strength
heuristic as a load balancing algorithm, fix the demand of each UE, and then search for the most
difficult scenario by maximizing packet loss by allowing the optimizer to adjust the positions of the
UEs. Optimization is performed by using Adam (learning rate = 0.01) to optimize the UE position
matrix after it is initialized with a uniform random distribution. Unfortunately, the max function
applied in equation 4 creates a road block to the direct application of this method by causing the
capacities of all areas with sufficiently high SINR to be equal, effectively removing any UE position
gradients in the area. We get around this by using C = CSH for the optimization process. This
approximation is only inaccurate for UEs that have good connections to base stations, and we intuit
that the optimized solution will have few ofs those. Results are presented in figure 1(b), which
confirms that a very large increase in packet loss (compared to the random uniform initialization)
can be reliably attained, though the exact extent of this improvement has a non-trivial dependence
on the initial state. Evaluation of packet loss for optimized UE positions using the non-approximate
capacity factor (equation 4) reveals that the approximation C = CSH does not introduce any error
for these scenarios.

5 Conclusion

This work presents a novel, differentiable, system-level RAN simulator and demonstrates its appli-
cation in two important network optimization tasks. We relax locality constraints on UE position
and assignment to facilitate gradient computation, then provide a method to re-introduce them. Our
packet loss computation approach, though simple, captures the two most critical factors impacting
system level performance: good performance requires UEs to have a high-quality connection to their
serving cell, and serving cells must not be over-loaded. In future work, we would like to expand our
approach to increase the fidelity of the packet loss computation by fitting it to real data. The design
of the simulator is amenable to the use of empirically determined signal strength maps, meaning it
can be applied to real-world scenarios without the need for extensive environment modeling.

4



References

[1] M. Agiwal, A. Roy, and N. Saxena. Next generation 5g wireless networks: A comprehensive
survey. IEEE Communications Surveys Tutorials, 18(3):1617–1655, 2016.

[2] Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd, John Heidemann, Ahmed Helmy, Polly
Huang, Steven McCanne, Kannan Varadhan, Ya Xu, and Haobo Yu. Advances in network
simulation. IEEE Computer, 33(5):59–67, May 2000. Expanded version available as USC TR
99-702b at http://www.isi.edu/%7ejohnh/PAPERS/Bajaj99a.html.

[3] Ivan Stojmenovic. Simulations in wireless sensor and ad hoc networks: matching and advancing
models, metrics, and solutions. IEEE Communications Magazine, 46(12):102–107, 2008.

[4] Thomas R Henderson, Mathieu Lacage, George F Riley, Craig Dowell, and Joseph Kopena.
Network simulations with the ns-3 simulator. SIGCOMM demonstration, 14(14):527, 2008.

[5] A. R. A. Kumar, S. V. Rao, and D. Goswami. Ns3 simulator for a study of data center networks.
In 2013 IEEE 12th International Symposium on Parallel and Distributed Computing, pages
224–231, 2013.

[6] Lelio Campanile, Marco Gribaudo, Mauro Iacono, Fiammetta Marulli, and Michele Mastroianni.
Computer network simulation with ns-3: A systematic literature review. Electronics, 9(2):272,
2020.

[7] Guowang Miao, Jens Zander, Ki Won Sung, and Slimane Ben Slimane. Fundamentals of mobile
data networks. Cambridge University Press, 2016.

5

http://www.isi.edu/%7ejohnh/PAPERS/Bajaj99a.html

	Introduction
	Background
	System model
	Locality constraints

	Optimization examples
	Conclusion

