
Using Differentiable Physics for Self-Supervised
Assimilation of Chaotic Dynamical Systems:

Supplementary Materials

Michael McCabe
University of Colorado Boulder

michael.mccabe@colorado.edu

Jed Brown
University of Colorado Boulder

jed@jedbrown.org

A Connection Between Amortized Filters and the EnKF

The Ensemble Kalman Filter (EnKF) is most naturally interpreted as a Bayesian filter which assumes
Gaussian state and observation distributions. However, when system dynamics are nonlinear, it is not
clear that the distribution over states will remain Gaussian. When the distribution is non-Gaussian,
then the update equations provided by the Kalman filter are no longer accurate. However, in practice,
the filter remains remarkably effective despite the fact that many real-world systems do become
non-Gaussian under forward simulation. This makes the EnKF update an intuitive starting point for
designing an alternative system. The following describes the update for a biased formulation of the
EnKF for linear observation operator H:

x̂Φ
i,t = Φg(x

a
i,t−1)

P̂Φ
t = Cov({xΦ

i,t}mi=1)

Kt = P̂Φ
t H

T (HP̂Φ
t H

T +Rt)
−1

x̂ai,t = x̂Φ
i,t +Kt(yt −Hx̂Φ

i,t)

(1)

When we remove the probabilistic interpretation, we see that each ensemble member is updated
independently using the current simulated ensemble member value, a value derived from the full
ensemble, and the observation.

Amortized assimilators operate in similar fashion. Each simulated ensemble member is updated
by a neural network fθ which takes as inputs the current simulated value x̂Φ

i,t, the diagonal of the
covariance P̂Φ

t , and the incoming observation yt. One could allow for more flexibility by taking the
entire ensemble into a permutation-invariant network architecture, however, in practice we found
that this results in poor ensemble diversity and optimistic views of state uncertainty such that the
assimilator eventually disregards observations.

B Experiment and Hyperparameter Settings

B.1 Shared Configurations

The amortized assimilators were implemented in PyTorch [1] using the torchdiffeq library [2] for
ODE integration. Architectural features were kept near constant across all experiments. The exception
is that we used circular padding for systems with periodic boundary conditions and zero padding
otherwise. All feedforward base networks consist of two identical blocks of a dense layer of width
250, LayerNorm [3], a LeakyReLU activation, and standard Dropout [4] followed by a linear output
layer (or sigmoid for fN). Convolutional base networks consist of three blocks which replace the
dense layer with a 1D convolutional layer with 32 filters of width 5 with circular padding and
the standard dropout layer with a spatial dropout layer [5]. Convolutional networks include one

Workshop on Differentiable Vision, Graphics, and Physics in Machine Learning at NeurIPS 2020.

additional convolutional layer with linear or sigmoid outputs for fL and fN respectively in place of the
linear/sigmoid output layer. All feedforward networks were trained for 1000 epochs. Convolutional
networks were trained for 500 epochs. A dropout rate of .1 was used for feedforward models and .2
was used for convolutional models.

Traditional assimilation methods were tuned on a per task basis via grid search centered around
previously reported results. All methods with a smoothing analog (iEnKF, 4DVAR) were computed
using a lag of 1 for near-equivalence to filtering methods.

In all experiments, validation and test data were generated by simulating an additional 1000 steps
beyond the training set for validation and 5000 steps beyond the end of validation for test. All
assimilation processes are initialized by sampling ensemble members from a Gaussian with mean
equal to the true initial state and standard deviation equal to the experiment observation error.
We execute 20 evaluation runs for each method with different noise samples and report the mean
time-averaged full state RMSE relative to ground truth.

B.1.1 EnAF Architecture

In lieu of a standard method for listing out neural architectures, we include the definition as a PyTorch
Sequential layer:

f _ l i n e a r = nn . S e q u e n t i a l (
nn . L i n e a r (o b s _ s i z e + 2∗ s t a t e _ s i z e

+ h i d d e n _ s i z e , h i d d e n _ s i z e) ,
nn . LayerNorm (h i d d e n _ s i z e) ,
nn . LeakyReLU () ,
nn . Dropout (do) ,
nn . L i n e a r (h i d d e n _ s i z e , h i d d e n _ s i z e) ,
nn . LayerNorm (h i d d e n _ s i z e) ,
nn . LeakyReLU () ,
nn . Dropout (do) ,
nn . L i n e a r (h i d d e n _ s i z e , s t a t e _ s i z e + h i d d e n _ s i z e)

)

where fN appends a sigmoid activation to the last layer. State size and observation size are determined
by the system model. The input size is determined by the size of the observation, the forecast state
(and the ensemble variance), and mt−1. Hidden size is used both for memory size and hidden size.
For all experiments this was set to 250.

B.1.2 ConvEnAF

We describe the convolutional version in the same manner:

f _ l i n e a r = nn . S e q u e n t i a l (
nn . Conv1d (n_in , h i d d e n _ s i z e , k e r n e l _ s i z e = 5 ,

padd ing = 4 , padding_mode = ’ c i r c u l a r ’) ,
nn . LayerNorm (s t a t e _ s i z e) ,
nn . LeakyReLU () ,
S p a t i a l D r o p o u t 1 d (do) ,
nn . Conv1d (h i d d e n _ s i z e , h i d d e n _ s i z e , k e r n e l _ s i z e = 5 ,

padd ing = 4 , d i l a t i o n = 1 , padding_mode = ’ c i r c u l a r ’) ,
nn . LayerNorm (s t a t e _ s i z e) ,
nn . LeakyReLU () ,
S p a t i a l D r o p o u t 1 d (do) ,
nn . Conv1d (h i d d e n _ s i z e , h i d d e n _ s i z e , k e r n e l _ s i z e = 5 ,

padd ing = 4 , d i l a t i o n = 1 , padding_mode = ’ c i r c u l a r ’) ,
nn . LayerNorm (s t a t e _ s i z e) ,
nn . LeakyReLU () ,
S p a t i a l D r o p o u t 1 d (s t a t e _ s i z e) ,
nn . Conv1d (h i d d e n _ s i z e , 7 , k e r n e l _ s i z e = 5 ,

padd ing = 4 , d i l a t i o n = 1 , padding_mode = ’ c i r c u l a r ’)
)

2

The major difference between the ConvEnAF and its feedforward cousin is the input representation.
In the ConvEnAF, memory is treated as spatial. It is explicitly represented as additional input channels.
The depth of these memory channels was chosen to be roughly equivalent in size to the feedforward
memory. For the 40 dimensional Lorenz system, each spatial dimension was given an additional 6
input channels. For the 128 dimensional KS equation, we used 4 memory channels.

As the use of convolutional models required the assumption that the spatial structure of the system
was known, we also employed a different partial observation strategy here. For the feedforward
networks, we used an independent network for each observation type. Here, we added a masking
layer consisting of .1 for observed values and -.1 for unobserved values. In the observation vector
(which was represented by an input channel), unobserved values were then filled by the forecast
values of a random ensemble member. We also experimented with zero fill which performed similarly
to the random ensemble member fill.

For non-periodic boundary conditions, we used zero-padding instead of circular padding.

B.2 Lorenz 96

We use the Lorenz 96 system [6] to evaluate how learned assimilator performance compares to
standard methods across multiple ensemble sizes and noise levels. This is a common data assimilation
test system as the presence of external forcing, internal dissipation, and advection terms lead to highly
chaotic behavior at the given settings with a passing resemblance to atmospheric dynamics,

B.2.1 Data Generation and Training

We generate a training set of 3000 sequences of 80 time steps of length .1 starting from a random
standard normal vector using an RK-4 integrator [7] with a step size of .05.

Partial observability is tested in a series of experiments by viewing only a rotating subset consisting of
every fourth state variable. While this cycle is fixed during testing, to ensure the learned assimilators
cannot coadapt to a given ordering of observation types, we randomize the ordering of observation
operators during training.

B.2.2 Hyperparameter Search

The following describe the hyperparameter search space used for numerical data assimilation methods:

• LETKF
– Inflation - [1.0, 1.1] searched in increments of .01. Used 1.05 in experiments.
– Localization Radius - [1, 10] searched in increments of 1. Used 5 in experiments.

• 4DVAR
– Background Covariance - All 4DVAR assimilations used the empirical covariance

from historical data (the training set).

• iEnKF
– Inflation - [1.0, 1.1], searched in increments of .01. Used 1.07 in experiments.

B.3 KS

B.3.1 Data Generation and Training

The training set was generated by spatially discretizing the system into 128 evenly spaced nodes and
integrating using a RK4 integrator with exponential time differencing [8]. We use a fixed initial value
and generate a training set of 6000 sequences of 40 steps of length 1 with integration steps of size .5.

B.3.2 Hyperparameter Search

• LETKF
– Inflation - [1.0, 1.1] searched in increments of .01. Used 1.05 in experiments.

3

– Localization Radius - Used a course to fine search. Initial scan searched [5, 30]
searched in increments of 5. Second level searched [10, 20] in increments of 1. Used
15 in experiments.

• 4DVAR
– Background Covariance - All 4DVAR assimilations used the empirical covariance

from historical data (the training set).
• iEnKF

– Inflation - [1.0, 1.15], searched in increments of .01. Used 1.1 in experiments.

B.4 Model misspecification

B.4.1 Data Generation and Training

We generate a training set of 6000 sequences of 40 time steps of length .1 starting from a random
standard normal vector using an RK-4 integrator with a step size of .005 using the two-level Lorenz
equations. During assimilation, we integrate the state estimate forward under the one-level Lorenz
dynamics with an RK-4 integrator using a step size of .05 as in the L96 experiments.

With a significantly misspecified model, the argument used to justify the self-supervised framework
breaks down as now the objective minimizing estimate x̂t is no longer the true xt but rather whichever
value maps to the true value of xt+1 under the misspecified dynamics. To account for the error, we
add a regularization term based on the analysis log likelihood so that the training objective is now:

L=
1

T − 1

T−1∑
t=1

(
||Ht+1(Φgτ (x̂t))−yt+1||2Rt+1

+ ||Ht(x̂
Φ
t)−yt||2Rt

+ ||x̂Φ
t − x̂t||2P +log det(P)

)
(2)

B.4.2 Hyperparameter Search

The following describe the hyperparameter search space used for numerical data assimilation methods:

• LETKF
– Inflation - [1.0, 2.0] searched in increments of .1. Used 1.8 in experiments.
– Localization Radius -

• 4DVAR
– Background Covariance - All 4DVAR assimilations used the empirical covariance

from historical data (the training set).
• iEnKF

– Inflation - [1.0, 10.0], searched in increments of .5. Used 7.5 in experiments.

C Behavior of Autoregressive Decay

Here we include an analysis of the behavior of the autoregressive decay terms λxi
, λci which is output

from fN . Going forward, we reference λt since all comments apply to both values. All associated
graphs are results are from the partially observed Lorenz 96 task using a feedforward network. Recall
the update equations for the recurrent cell used in the EnAF:

x̂Φ
i,t = Φg(x̂

a
i,t−1, τ) P̂Φ

t = Cov(x̂Φ
i,t)

zxi
, zci = fL(x̂Φ

i,t, P̂
Φ
t , yt, ci,t−1) λxi

, λci = fN (x̂Φ
i,t, P̂

Φ
t , yt, ci,t−1)

x̂ai,t = λxi
� x̂Φ

i,t + zxi
ci,t = λci � ci,t−1 + zci

(3)

One observation is that each layer acts like a stable AR-1 function. In this section, we include
qualitative evidence that fN could likely be less expressive. In figure 1, we see that while early
training makes heavy use of the autoregressive decay term λi to adjust the forecast value, the network

4

Figure 1: Mean autoregressive decay values while assimilating the first 40 observations in the
validation sequence by epoch and assimilation step. Left shows the mean over dimensions that were
observed at the given assimilation step. Right shows mean over unobserved dimensions.

learns quickly to output values consistently near one, which would indicate that fN is only minorly
impacting the predicted value later in training.

However, the clear columnar patterns in figure 1 provides some evidence indicating that there is
information encoded in the output of fN . While later in training even the low values of λi are above
.95, the fact that the same observations consistently produce lower values of λi does indicate some
utility to the network beyond early stabilization. We also observed a difference between the decay
applied to observed and unobserved dimensions. λi is consistently slightly lower for dimensions that
were observed than for those that were not. This could be interpreted in two ways. Either the network
is more willing to make larger changes to dimensions that were observed or the values indicate a
preference for the forecast state over an observation-based estimate when the dimensions are not
directly observed. While the latter explanation is intuitively appealing, we tend to favor the former as
it seems to be consistent with the behavior of the output of fL which also produces larger changes for
observed values combined with the fact that the λi values are not low enough for one to realistically
state that the forecast value is ever being discarded in favor of the observed values. It appears the
model learns to use the autoregressive decay term as an additional tool for making adjustments as
opposed to having a meaning similar to the Kalman gain.

The combination of these two factors implies that fN is largely complementing fL later in training.
If the benefit is largely due to early training stabilization, then a less expressive fN could provide the
same benefit while reducing the overall parameter count.

Other variations of the proposed cell that we examined before settling on the approach described
in the main text of the paper included standard GRU and LSTM cells with linear readout layers,
the NRU cell, a non-gated update x̂t = x̂Φ

t + zx, variants that used a convex combination x̂t =
λx� x̂Φ

t + (1−λx)� zx. We experienced divergence when using cells with no saturating operations
while standard saturating cells were outperformed by the autoregressive decay cell for this task.
Furthermore, we saw no improvement from the convex combination version and ceased pursuing
development in that direction.

References
[1] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary Devito

Facebook, A I Research, Zeming Lin, Alban Desmaison, Luca Antiga, Orobix Srl, and Adam
Lerer. Automatic differentiation in PyTorch. In Advances in Neural Information Processing
Systems 32, 2019.

[2] Ricky T.Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary
differential equations. In Advances in Neural Information Processing Systems, 2018. doi:
10.2307/j.ctvcm4h3p.19.

[3] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016.
[4] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-

dinov. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of

5

Machine Learning Research, 15(56):1929–1958, 2014. URL http://jmlr.org/papers/v15/
srivastava14a.html.

[5] Jonathan Tompson, Ross Goroshin, Arjun Jain, Yann LeCun, and Christopher Bregler. Efficient
object localization using convolutional networks, 2014.

[6] Edward N. Lorenz. Predictability-a problem partly solved. In Predictability of Weather and
Climate. 2006. ISBN 9780511617652. doi: 10.1017/CBO9780511617652.004.

[7] C. Runge. Ueber die numerische Auflösung von Differentialgleichungen. Mathematische
Annalen, 1895. ISSN 00255831. doi: 10.1007/BF01446807.

[8] Aly Khan Kassam and Lloyd N. Trefethen. Fourth-order time-stepping for stiff PDEs. SIAM
Journal on Scientific Computing, 2005. ISSN 10648275. doi: 10.1137/S1064827502410633.

6

http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html

	Connection Between Amortized Filters and the EnKF
	Experiment and Hyperparameter Settings
	Shared Configurations
	EnAF Architecture
	ConvEnAF

	Lorenz 96
	Data Generation and Training
	Hyperparameter Search

	KS
	Data Generation and Training
	Hyperparameter Search

	Model misspecification
	Data Generation and Training
	Hyperparameter Search

	Behavior of Autoregressive Decay

