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Abstract

We propose a deep learning based data assimilation framework which we call
Amortized Assimilation for state estimation in high-dimensional chaotic dynamical
systems. Amortized assimilators utilize differentiable simulation of physics-derived
system dynamics to enable end-to-end physics-aware gradient based training of
denoising neural networks which update a simulated system state based on noisy
observations. These hybrid models are able to learn to assimilate complex in-
put distributions while maintaining a computable test-time update step in an en-
tirely self-supervised manner using only sequences of noisy observations without
loss of accuracy over training with ground truth targets. Numerical experiments
demonstrate that amortized assimilators compare favorably with widely used data
assimilation methods across common benchmark tasks.

1 Introduction

.

Data assimilation methods are widely used in the geosciences to reconcile noisy observations with
dynamical models derived from prior scientific knowledge in applications where the accuracy of
simulation-driven forecasts depends heavily on the accuracy of initial condition estimates [1, 2].
Historically, these methods have fallen into two major categories: efficient Bayesian filters which
treat assimilation as statistical inference or flexible variational methods which view it as nonlinear
optimization [3, 4]. We present a framework for learning nonlinear, non-Gaussian assimilators which
we call Amortized Assimilation. Our method inherits the objective flexibility of variational approaches
but amortizes the optimization procedure by training a neural network to directly update the state
estimate based on both observed and simulated data in a manner akin to Bayesian filters.

Amortized assimilators combine deep learning-based state estimation with differentiable numerical
models derived from physical knowledge. We show that incorporating differentiable simulation into
training enables a novel self-supervised training approach which uses only noisy observations without
loss of accuracy over fully-supervised training using ground truth target information that is rarely
available in practice. Numerical results across a set of experiments on chaotic system benchmarks
show that assimilators learned in this way can greatly improve the accuracy of state estimates in the
challenging low ensemble size and high noise regimes where existing methods struggle.

Related Work Deep learning for data assimilation is a growing area, though one limited by the
challenges we address in this work. Some early approaches have used reanalysis data produced from
traditional assimilation to attempt supervised training of assimilators [5, 6]. Other efforts exploring
the use of deep learning in data assimilation have pursued an alternative hybridization strategy to
our approach where neural networks are used to learn dynamics while standard methods are used
for assimilation [7–9]. Outside of data assimilation, a significant body of work has explored deep
learning parameterizations of Bayesian filters [10–14], and particle filters [15–18].
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2 Amortized Assimilation

The EnKF and Ensemble-based Filtering Let xt ∈ Rn be the true state vector at time t for a
dynamical system that evolves in time according to ẋt = g(xt) where g : Rn → Rn is a deterministic
Lipschitz time-invariant function which admits a unique solution to the initial value problem. At
a discrete set of points in time T = {0, τ, 2τ, . . . } we observe a sequence of measurements YT =
{yt | 0 ≤ t ≤ T}. Each yt represents a partial observation of the true state generated by an unbiased
observation operator Ht acting on the system state with the form yt = Ht(xt) + ηt where ηt is a
Gaussian random variable with diagonal covariance σ2

t I . XT denotes the corresponding set of true
state values at each observation time. Φg : Rn × R→ Rn is the flow that maps initial conditions xt
forward in time under dynamics g.

In this work, we focus on the filtering problem where the goal is to estimate p(xt|Yt). Filtering is
a vital tool for estimating initial conditions in simulation-based forecasting. Filtering algorithms
are typically split into forecast and analysis steps. The forecast step under deterministic dynamics
reduces to computing the pushforward of p(xt−1|Yt−1) by dynamics g. In the analysis step, the
forecast is refined by new observations to estimate p(xt|Yt). We denote the analysis and forecast
estimates of xt by x̂at and x̂Φ

t respectively. The same syntax is maintained for analysis and forecast
estimates of other properties of interest.

One of the most widely used methods for assimilation in large scale chaotic systems is the Ensemble
Kalman Filter (EnKF) [19]. The EnKF is a sequential Monte Carlo [20] extension of the classical
Kalman filter [21] which permits nonlinear dynamics while maintaining Gaussian assumptions.
Instead of attempting to exactly compute the evolution of a probability density function under
nonlinear dynamics, ensemble methods maintain an empirical approximation to the target distribution
in the form of a set of samples or particles x̂i,t whose evolution is simulated numerically. The EnKF
differs from particle filter methods in that new observations are assimilated by applying the closed
form Kalman filter update to each ensemble member where the empirical covariance of the ensemble
P̂Φ
t is used in place of an exact covariance Pt.

The amortized assimilators proposed in this work are based on a reinterpretation of the EnKF update
equations that is described in the supplementary materials. Like the EnKF, we employ an ensemble
approach to uncertainty quantification, but to relax the Gaussian assumptions of the EnKF, we learn
a data-driven update fθ(x̂Φ

i,t, P̂
Φ
t , yt) in the form of a neural network parameterized by weights θ

which are optimized to minimize the self-supervised loss we introduce in the next section.

Figure 1: Comparing test-time super-
vised analysis loss on Lorenz 96 system
across training objectives.

Self-Supervised Assimilation

Recent work in computer vision has demonstrated the
effectiveness of self-supervised learning for image denois-
ing [22, 23]. Batson and Royer [23] introduced the J -
invariance framework and showed that for a denoising task
over noisy feature set y ∈ Rn which acts as an unbiased
estimator of a true signal x ∈ Rn and can be partitioned
into subsets with uncorrelated noise, the J -invariant func-
tion f which minimizes the self-supervised squared er-
ror ||f(y)− y||2 is in fact an optimal denoiser under the
supervised squared error ||f(y) − x||2. We extend this
framework to the dynamical systems setting to develop a
self-supervised training method for data assimilation.

Consider the time-unrolled filtering setting. Recall that YT
denotes the set of unbiased noisy realizations of XT at all
observation times up to and including time T . Sequential
filters effectively partition YT into two subsets of features, YT−1 = {yi | 0 ≤ i < T} and Y CT−1 =

{yT }. Any function which utilizes only YT−1 to predict the values of Y CT−1 is inherently J -invariant.
In fact, this is true for any arbitrary partition which acts analogously to a “donut" filter in image
denoising, but the sequential nature of the problem limits the practical usefulness of other choices of
partition.

Training a neural network to directly predict xT from YT−1 over large time steps is an enormously
difficult task in chaotic systems, but for many problems in physics and engineering, robust physics-
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derived models of system dynamics already exist. To take advantage of these numerical models,
we want the assimilator to estimate xT−1 from YT−1. Unfortunately, xT−1 is rarely accessible in
real-world settings. Additionally, a self-supervised objective comparing the analysis estimate x̂at
to yT−1 would be minimized by an identity mapping of the most recent observation and provide
no denoising benefit. We address this issue by utilizing differentiable simulation to train with the
following objective:

L(θ) =
1

T − 1

T−1∑
t=1

∣∣∣∣∣∣∣∣ 1

m

m∑
i=1

(
Ht+1(fΦ(x̂Φ

i,t, P
Φ
t , yt))

)
− yt+1

∣∣∣∣∣∣∣∣2 (1)

where m is the ensemble size, fΦ = Φg(·, τ) ◦ fθ, and fθ is our neural network parameterized by
weights θ. The loss is computed by simulating the analysis ensemble members x̂ai,t resulting from the
assimilation of a given observation yt forward in time until the next available observation was recorded,
then taking synthetic observations from the simulated ensemble members ŷi,t+1 = Ht+1(x̂Φ

i,t+1)
from which the mean synthetic observation is compared to the true observation.

When dynamics g admit a unique solution to the initial value problem, the flow Φg(·, τ) restricted
to a fixed τ is injective and Φg(x̂

a
t , τ) = xt+1 if and only if x̂at = xt. An fθ which minimizes the

self-supervised forecast objective therefore also minimizes the supervised squared error ||x̂at − xt||2.

Figure 1 compares the test analysis loss for the partially observed Lorenz 96 system across training
types and targets. The test error of the models trained with self-supervised and supervised fore-
cast targets are indistinguishable while the model trained with a self-supervised analysis target is
significantly less accurate.

Sequential Dropout Ensembles Ensemble-based uncertainty estimates are an elegant solution to
the problem of computing the evolution of uncertainty under nonlinear dynamics, but without
a probabilistic interpretation of the assimilator evaluating the analysis uncertainty is non-trivial.
We address this by combining ensemble estimation with MC Dropout [24] which interprets the
output from a dropout regularized neural network as samples from a variational approximation of
p(xt|x̂Φ

t , yt). Defining q(xt|x̂Φ
t , yt, θ) to be our variational density conditioned on model parameters

θ. We would like to marginalize out the uncertainty over θ which is represented by variational
distribution q(θ):

q(xt|x̂Φ
t , yt) =

∫
p(x̂t|x̂Φ

t , yt, θ)q(θ) dθ (2)

In our case, x̂Φ
t is not a point estimate but rather a distribution over input states. We need to further

marginalize out x̂Φ
t to get:

q(xt|yt) =

∫ ∫
p(x̂t|x̂Φ

t , yt, θ)q(θ)p(x̂
Φ
t ) dθ dx̂Φ

t (3)

This remains intractable; however, we have access to samples from the forecast distribution in the
form of our ensemble members which reduces sampling from the analysis distribution into sequential
sampling where we take MC Dropout samples using each of the forecast distribution samples as
input.

Ensemble Amortized Filters The Ensemble Amortized Filter (EnAF) and Convolutional Ensemble
Amortized Filter (ConvEnAF) are amortized assimilators which use the tools developed in the
preceding sections to learn sequential filters from data. Amortized assimilators are trained as an
unrolled compute graph where a set of potentially independent recurrent cells (corresponding to
different observation types) are connected by the forward simulation of physics-based dynamics.
Here, we use a non-standard memory-augmented recurrent cell mostly closely related to Recurrent
Highway networks [25] using non-saturating memory [26]. Denoting cell memory by ci,t, the update
for our amortized filter block is as follows:

x̂Φ
i,t = Φg(x̂

a
i,t−1, τ) P̂Φ

t = Cov(x̂Φ
i,t)

zxi , zci = fL(x̂Φ
i,t, P̂

Φ
t , yt, ci,t−1) λxi , λci = fN (x̂Φ

i,t, P̂
Φ
t , yt, ci,t−1)

x̂ai,t = λxi � x̂Φ
i,t + zxi ci,t = λci � ci,t−1 + zci

(4)

where fL and fN are arbitrary neural networks with dropout. fL uses a linear output layer while fN
has an elementwise sigmoid activation on the output layer. The resulting update rules resemble a
stable AR-1 process. We use only the diagonal of the full covariance matrix to improve scalability.
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3 Experiments

m=5 m = 10 m=15 m=20

σ Name Full Partial Full Partial Full Partial Full Partial

1.0 LETKF 3.74 – 0.29 1.99 0.28 0.87 0.28 0.69
4DVar 0.85 1.41 0.85 1.41 0.85 1.41 0.85 1.41
iEnKF – – 3.55 – 2.55 2.96 0.27 0.89
EnAF .41 .88 0.40 0.85 0.41 0.83 0.39 0.81
ConvEnAF .33 .73 0.32 0.71 0.31 0.70 0.31 0.68

2.5 LETKF 3.52 3.81 1.05 2.23 0.80 2.07 0.81 1.91
4DVar 1.65 3.13 1.65 3.13 1.65 3.13 1.65 3.13
iEnKF 4.36 – 3.77 3.95 2.36 3.55 0.88 2.48
EnAF 0.94 1.87 0.94 1.88 0.91 1.85 0.89 1.81
ConvEnAF 0.82 1.64 0.80 1.62 0.80 1.60 0.78 1.59

Table 1: L96 RMSE.

We evaluate performance on three benchmark
systems. Loss is reported as the time-averaged
RMSE between the mean analysis state estimate
and the true state. Each system is evaluated
across a variety of ensemble sizes (denoted by
m) and isotropic Gaussian observation noise
levels (whose standard deviation is denoted by
σ).

We compare performance against a set of widely
used filtering methods for data assimilation im-
plemented in the Python DAPPER library [27]. These methods include 4DVar [28], the Local
Ensemble Transform Kalman Filter (LETKF) [29], and the Iterative Ensemble Kalman Filter (iEnKF)
[30]. Please see appendix B for full experiment settings.

Lorenz 96: Lorenz 96 [31] is a system of coupled differential equations with the following governing
equations:

ẋi = (xi+1 − xi−2)xi−1 − xi + F (5)
The system is defined to have periodic boundary conditions xK+1 = x1, x0 = xK , and x−1 = xK−1

where K is the number of system dimensions. We set the number of dimensions to 40 and the forcing
value to F = 8. Results are reported in Table 1. Partial observability is tested by observing only a
rotating subset consisting of every fourth state variable.

σ Name m=5 m=10 m=15 m=20

1.0 LETKF 1.411 0.132 0.131 0.131
4DVar 0.444 0.444 0.444 0.444
iEnKF 1.446 0.927 0.431 0.384
ConvEnAF 0.141 0.138 0.136 0.136

2.5 LETKF 1.396 0.566 0.450 0.473
4DVar 0.941 0.941 0.941 0.941
iEnKF 1.573 1.185 0.859 0.615
ConvEnAF 0.370 0.365 0.363 0.362

Table 2: KS RMSE.

Kuramoto-Sivashinsky: The KS equation [32] is a
fourth-order partial differential equation known to
exhibit chaotic behavior. In one spatial dimension,
the governing equation can be written as:

ut + ux + uxxxx + uux = 0 (6)
with periodic boundary conditions. Results are re-
ported in Table 2.

Model Misspecification The two-level Lorenz sys-
tem [31] introduces an additional coupling between
observable variables xt and a set of small scale unob-
servable variables vt:

ẋi = (xi+1 − xi−2)xi−1 − xi + F − hc

b

∑
j=J(i−1)+1

vj

v̇j = −cbvj+1(vj+2 − vj − 1)− cvj +
hc

b
xbj−1/Jc+1

(7)

σ Name m=5 m=10 m=15 m=20

1.0 LETKF 0.927 0.674 0.671 0.672
4DVar 0.659 0.659 0.659 0.659
iEnKF 2.551 1.290 1.180 1.082
ConvEnAF 0.530 0.514 0.509 0.507

2.5 LETKF 1.677 1.601 1.627 1.637
4DVar 1.430 1.430 1.430 1.430
iEnKF 2.831 2.011 2.085 2.253
ConvEnAF 0.733 0.714 0.710 0.705

Table 3: Model misspecification RMSE.

The forcing is set to F = 8 and the coupling parameters
are set to h = 1, c = 10, b = 10 for consistency
with the single level model. We include two levels of
misspecification. First, we use the two-level Lorenz 96
model configured with K = 40 large scale variables and
J = 32 small scale variables per large scale as the true
model and the one-level system described in equation 5
as the forecast model. For the second, we train with an
observation error σ = 1 but test with observation error
σ = 2.5. Results are reported in Table 3.

4 Conclusion

We presented a new framework for assimilation of chaotic dynamical systems that addresses several
of the major challenges inhibiting the use of deep learning for data assimilation. Our hybrid deep
learning-numerical simulation model enables the use of a self-supervised objective for learning in
domains without ground truth data while addressing the need for effective uncertainty quantification.
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