
Learned Equivariant Rendering without
Transformation Supervision

Cinjon Resnick∗

NYU
Or Litany

NVidia
Hugo Larochelle

Google
Joan Bruna

NYU
Kyunghyun Cho

NYU

Abstract

We propose a self-supervised framework to learn scene representations from video
that are automatically delineated into objects and background. Our method relies on
moving objects being equivariant with respect to their transformation across frames
and the background being constant. After training, we can manipulate and render
the scenes in real time to create unseen combinations of objects, transformations,
and backgrounds. We show results on moving MNIST with backgrounds.

1 Introduction

Learning manipulable representations of scenes is a challenging task. Ideally, we would give our
model an image of a scene and receive an inverse rendering of coherent objects along with a static
background. This is infeasible without an inductive bias because the problem is ill-posed. For
example, distinguishing a previously unseen object from the background is inherently ambiguous.
Consequently, prior works introduce mechanisms to help the model at training or inference time. We
do similarly and choose a mechanism that intuitively follows from learning from video.

Assume an input video of a dynamic scene captured by a static camera. The static background is the
implicit objects that are constant across the frames2. In contrast, the foreground is the implicit objects
that are equivariant with respect to a family of transformations containing more than just the identity.
We use this difference to infer a scene representation that captures separately the background and the
moving object. Like Dupont et al. [1], we limit the family of transformations to be affine. Building
on their work, we attain two novel results:

1. Learn the transformation: We learn the tranformation from nearby video frames and do
not require it as input during training. This has further benefits at inference time.

2. Distinguish objects and background: By encoding the background as the constant objects
and the manipulable character as the equivariant object, we yield orthogonal encoders for
the character and the background and can consequently manipulate them independently.

Our model is trained in a self-supervised fashion with only rendered pairs (xip, x
i
q) of nearby frames

from video sequence i. We impose no other constraint and can render new scenes combining objects
and backgrounds in real time with additional (potentially unrelated) frames xj and xk. We show
strong results in Sec 4 on a 2D task involving moving MNIST[3] digits on static backgrounds where
we demonstrate the following manipulations:

• Render the object in xi1 but with the background from xj1.
• Render the object in xi1 using the transformation seen from xjp → xjq .

∗Correspondence to cinjon@nyu.edu.
2Note that with this definition of the background, occlusions are just occasions when the implicit object is

not visibly painted in the scene. Practically, this can be handled with alpha transparency.

Workshop on Differentiable Vision, Graphics, and Physics in Machine Learning at NeurIPS 2020.

• Combine the above two manipulations to render the object in xi1 on the background from xj1
using the transformation exhibited by the change seen from xkp → xkq .

2 Background

Dupont et al. [1] denoted an image x ∈ X = Rc×h×w along with a scene representation z ∈ Z,
a rendering function g : Z → X mapping scenes to images, and an inverse renderer f : X → Z
mapping images to scene representations. It is helpful to consider x as a 2D rendering of an implicit
object o from a specific camera viewpoint. Then, with respect to transformation T , an equivariant
scene representation z satisfies the following relation:

TXg(z) = g(TZz) (1)

Figure 1: Inference demonstration:
The first three rows are ground truth
from the test set. The fourth row is
the object from the third row, the trans-
formations in the second row, and the
background from the first row.

In other words, transforming a rendering in image space is
equivalent to first transforming the scene in feature space and
then rendering the result. Here, x is a 2D image rendering, z
is that rendering’s scene representation, and TZ is an affine
transformation. We then learn neural networks f and g s.t.:

x2 = TXx1 = TXg(z1) = g(TZz1) = g(TZf(x1)) (2)

In [1], they require triples (x1, x2, θ). The pair x1 and x2 are
renderings of the same object o, and θ is the rotation transform-
ing o from its appearance in x1 to its appearance in x2. They
use the same θ for TZ , which means that the 3D representation
z1 = f(x1) is rotated by θ. This yields z̃1 = RZθ f(x1) and
z̃2 = (RZθ)

−1f(x2), with which they train g and f to minimize
reconstruction loss (Eqn 3):

Lrender = ||x2 − g(z̃1)||+ ||x1 − g(z̃2)|| (3)

After training, they infer new renderings by first inverse render-
ing z = f(x), then applying rotations TZ upon z, and finally rendering images x̂ = g(TZz). This is
notable because it means we can operate entirely in feature space. As we show in Sec 3, this lets us
manipulate the output rendering in ways that are very difficult to perform in image space.

3 Method

Our motivation is in asking if we can we use the smoothly-changing nature of video to learn the
transformations between frames. Like [1], we assume that the change between frame Ft and Ft+1

can be modeled with affine transformations. However, while they use one (rotation) transformation,
we assume an arbitrary affine transformation on the character object plus an invariant transformation
on a static background (in-painting as needed). Additionally, we remove the θ requirement at both
training and test by learning the transformation TZ from data.

Learning the transformation That video changes smoothly lets us advance past affine transfor-
mations parametrically defined with a θ angle of rotation and instead learn transformations based
on frame changes. One advantage is that the model is now agnostic to which affine transformations
the data exhibits. Another is that at inference time, the model is agnostic to whether the frame to be
transformed is input to the transformation function.

Distinguishing objects and background The renderer g is equivariant to moving objects. A static
background however will be constant across a video. We take advantage of this to learn g along with
functions fo and fb corresponding to the moving object and the background such that, at inference
time, we can mix and match objects and backgrounds that we have previously never seen together.

2

Setup Building on Sec 2, we define fb and fo respectively for the encoding of the background and
the object. Following Eqn 2, we then learn neural networks fo, fb, g, and TZ such that:

x2 = g
(
TZ(fo(x1), fo(x2)) ◦ fo(x1) + fb(x1)

)
(4)

During training, we require only the pair (x1, x2). We find that two more constraints help. The first
is that the object encoder is equivariant with respect to the transformation. The second is that the
background encoder is constant. These are described below where we optimize Ltotal with scalar
coefficients αequiv, αinv:

Lscene = ||g
(
TZ(fo(x1), fo(x2)) ◦ fo(x1) + fb(x1)

)
− x2||2 (5)

Lequiv = ||TZ(fo(x1), fo(x2)) ◦ fo(x1)− fo(x2)||2 (6)
Linv = ||fb(x1)− fb(x2)||2 (7)
Ltotal = Lscene + αequivLequiv + αinvLinv (8)

With this setup, both TZ and fo learn to handle every object similarly. This is important because
it means that at inference time we can render novel scenes given a pair of nearby frames (x1, x2)
in a video. Denoting h(x1, x2, x3, x4) = g

(
TZ(fo(x1), fo(x2)) ◦ fo(x3) + fb(x4)

)
, the novel

renderings described in Sec 1 and shown in Sec 4 are:

• h(xi
1,x

i
2,x

i
1,x

j
1): Render the object in xi1 as it is in xi2 but with the background from xj1.

• h(xi
1,x

i
2,x

j
1,x

j
1): Render the object in xj1 using the transformation exhibited by the change

in the object from xi1 → xi2.

• h(xi
1,x

i
2,x

j
1,x

k
1): Combine the above two to render the object in xj1 on the background

from xk1 using the transformation exhibited by the change in the object from xi1 → xi2.

4 Experiments

We show experiments on a dataset built on MNIST. This test-bed is suitable for demonstrating that our
method is capable of both learning the transformations and separating objects from the background.

Dataset We generate videos, each of length M = 5, of MNIST digits (objects) moving on a static
background. The digits and background have dimensions (28, 28) and (64, 64) respectively. At
each training step, we select N digits in the train split of MNIST, as well as a background from the
set of pre-generated training backgrounds (see below). We then place these digits at some random
initial position. For each digit, and for each of M − 1 times, we choose randomly between either
rotation or translation. If we choose translation, then we translate the object independently in each of
the x and y directions by some random amount in [−10,−8, . . . , 8, 10] \ 0. If we choose rotation,
then we rotate the object by some random amount in [−15,−12, . . . , 12, 15] \ 0. In both cases, if
character leaves the boundaries of the image, then we redo the transformation selection. Otherwise,
that transformation is applied cumulatively to yield the next object position.

At this point, we have MNIST images on blank canvases. We overlay them on the chosen background
to produce a sequence of images where the change in each object from frames FT → FT+1 is small
and affine for the object and constant for the background. Afterwards, we randomly choose two
indices i, j and use (xi, xj) as the training pair. See Figure 1 for example sequences.

Backgrounds We create 64 randomly generated backgrounds for each of train and test. For each
background, we select a color from the Matplotlib CSS4 colors list. We then place five diamonds on
the background, each with a different random color, along with an independent and randomly chosen
center and radius. The radius is uniformly chosen from between seven and ten, inclusive.

Model We use neural networks for fo, fb, g, and TZ . While distinct, both fo and fb share the same
architecture details. The renderer g is a transposition of that architecture, albeit without being residual.
The transformation TZ has three important aspects. First, it is input-order dependent. Second, it uses
PyTorch’s[5] affine_grid and grid_sample functions to transform the scene similarly to how Spatial
Transformers[2] operate. The third is that it is initialized at identity.

3

Figure 2: Section 3 manipulations.
With counterclockwise direction and
bottom left origin, the transformations
in the third row are rotate(15), rotate(9),
translate(10, 4), translate(-8, -6).

Qualitative Results Our model learns to render new scenes
using objects from the test set of MNIST as well as backgrounds
it has never seen before. All shown sequences are on unseen
backgrounds with unseen MNIST digits where there at least
two transformations of each type (rotation and translation) and
the transformations were cumulatively large over the sequence.
We did not need to cherry-pick any of the results.

Figure 2 concisely demonstrates the manipulations from Sec 3.
The first three rows are ground truth from the test set. The
fourth row is replacing the background in the first row with that
of the second row. The fifth row is applying the transformations
in the third row to the first row’s character and background.
And the sixth row is both manipulations simultaneously.

In particular, the final row is rendered by encoding the character
from the first row, the background from the second row, and
using the transformations exhibited in the third row. With xij
as the jth frame from the ith sequence:

x6k = g
(
TZ(fo(x

3
1), fo(x

3
k)) ◦ fo(x1k) + fb(x

2
k)
)

Quantitative Results We tested reconstruction results by
evaluating the per pixel float MSE over the MNIST test set.
For each example, we randomly chose two pairs of (background, digit) and made corresponding
videos (x11, . . . , x

1
5) and (x21, . . . , x

2
5). We then indexed into the same random position in both

sequences to get frame pairs (x1i , x
1
j), (x

2
i , x

2
j).

Figure 3: Per-pixel MSE over 10,000
test examples. The transform and back-
ground manipulations use our learned
functions; Video frames is MSE of a
frame against a random (non-identical)
frame from the same video; No object
is MSE of the background versus the
full frame of background and object.

To get the MSE of transformation manipulations, we ren-
der the object and background from x2i but transformed like
in x1i → x1j . We compare this ground truth to x̂2j =

g(TZ(fo(x
1
i), fo(x

1
j)) ◦ fo(x2i) + fb(x

2
i). To get the MSE

of background manipulations, we render the object in x1j on
the background from x2j as ground truth and compare it to
x̂1j = g(TZ(fo(x

1
i), fo(x

1
j)) ◦ fo(x1i) + fb(x

2
i).

Fig 3 shows a boxplot of these results along with two baselines:
Video frames is the MSE of two random frames from the same
video; No object is the MSE of a full frame against only the
background from that frame. Given that MSE is a measure
of reconstruction quality with lower values being better, we
expect them to serve as upper bounds. Video frames is the
upper bound when reconstruction gets the object but places it
incorrectly. No object is the upper bound when reconstruction
fails to include the object. On this measure, we see that the
background manipulation is much better than the baselines, but
we cannot say with certitude that the transform manipulation
is better as it is within confidence interval of Video Frames and
its box plot overlaps with both baselines.

5 Related Work

Besides [1], two other related works are Worrall et al. [7], Olszewski et al. [4]. They also rely
on equivariance to learn representations capable of manipulating scenes. However, they do not
delineate objects and backgrounds, nor do they learn the TZ from data. Dupont et al. [1] assumes
that TZ is given during training; In Worrall et al. [7], TZ is a block diagonal composition of (given)
domain-specific transformations. Olszewski et al. [4] uses a user-provided transformation. That we
learn it from data lets us work with datasets where we do not have ground truth.

4

Reed et al. [6] is also related. They apply transformations to frames to yield an analogous frame.
However, they assume that the applying operation is addition rather than spatial transform, and they
require an additional frame as input to TZ at inference (3) and two additional during training (4).

6 Conclusion

In this work, we have presented a framework for learning an equivariant renderer capable of de-
lineating objects and the background such that it can manipulate each independently. Further, our
framework only requires self-supervised video sequences and does not need labels.

Our assumption that the transformation between frames is affine does not hold in general; a contrary
example is videos with nonlinear lighting effects. While there are real applications where it does
occur such as stop-motion animation, relaxing this assumption is an area we are actively considering.
A more pressing direction though is increasing the complexity of the datasets on which we experiment.
We leave that extension to future work.

References
[1] Emilien Dupont, Miguel Angel Bautista, Alex Colburn, Aditya Sankar, Carlos Guestrin, Josh

Susskind, and Qi Shan. Equivariant neural rendering, 2020.

[2] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and Koray Kavukcuoglu. Spatial trans-
former networks. CoRR, abs/1506.02025, 2015. URL http://arxiv.org/abs/1506.02025.

[3] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL http://yann.
lecun.com/exdb/mnist/.

[4] Kyle Olszewski, Sergey Tulyakov, Oliver J. Woodford, Hao Li, and Linjie Luo. Transformable
bottleneck networks. CoRR, abs/1904.06458, 2019. URL http://arxiv.org/abs/1904.06458.

[5] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

[6] Scott E Reed, Yi Zhang, Yuting Zhang, and Honglak Lee. Deep visual analogy-making. In
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural
Information Processing Systems 28, pages 1252–1260. Curran Associates, Inc., 2015. URL
http://papers.nips.cc/paper/5845-deep-visual-analogy-making.pdf.

[7] Daniel E. Worrall, Stephan J. Garbin, Daniyar Turmukhambetov, and Gabriel J. Brostow. Inter-
pretable transformations with encoder-decoder networks. CoRR, abs/1710.07307, 2017. URL
http://arxiv.org/abs/1710.07307.

5

http://arxiv.org/abs/1506.02025
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1904.06458
http://papers.nips.cc/paper/5845-deep-visual-analogy-making.pdf
http://arxiv.org/abs/1710.07307

Appendix

Further examples Here, we show more examples of our model manipulating sequences.

Figure 4: Reconstructions: The first, third, and fifth rows are original sequences. The second, fourth, and sixth
rows are reconstructions of the prior row where TZ is fixed as the same transformation as TX . Note that in
these scenarios, the results are not as strong as when TZ is a learned function.

6

Figure 5: Backgrounds: The first, second, and fourth rows are originals. The third and fifth rows are the prior
row but with the background changed to that of the first sequence.

Figure 6: Transformations: The first, second, and fourth rows are originals. The third and fifth rows are the
prior row but the transformation is a function of the first row.

7

Analyzing TZ We compare the learned TZ to the ground truth object transformation. Each column
in 1 shows a 2×3 matrix representing the independent statistics of each entry of the transformation in
question. These statistics are attained over 40,000 unique frame pairs. For example, the first column
shows the mean of each entry in the transformation matrix.

Transformation Mean Max Min

Ground Truth
(
0.990 −0.003 0.558
0.003 0.990 0.424

) (
1.000 0.500 26.74
0.588 1.000 30.00

) (
0.809 −0.588 −28.00
−0.500 0.809 −26.00

)
Learned TZ

(
1.197 0.050 −0.026
0.178 1.109 −0.023

) (
1.061 −0.324 −1.066
−0.063 1.026 −1.157

) (
1.268 0.362 0.936
0.314 1.262 0.889

)
Table 1: Independent statistics of the transformations.

Example background The diamond colors and radii are randomly chosen and distinct.

Figure 7: Example background.

PSNR of Baselines and Manipulations PSNR over 10,000 test examples. The transform and
background manipulations are done with our learned functions. Video frames is the PSNR of a
frame against a random (non-identical) frame from the same video. No object is the PSNR of the
background versus the full frame of background plus object.

Type PSNR 95% CI
Background manipulation 22.920± .033
Transform manipulation 18.912± .051
Baseline: Video frames 18.993± 0.319

Baseline: No object 18.609± .060
Table 2: PSNR.

8

	Introduction
	Background
	Method
	Experiments
	Related Work
	Conclusion

