Appendix: Inverse articulated-body dynamics from video via variational sequential Monte Carlo

Dan Biderman 1	Christian A	A. Naesseth ¹	Luhuan	Wu ¹ Taiga Abe ¹	
Alice C. Mosberger ¹		Leslie J. Sibener ¹		Rui Costa 1	
James I	James Murray ²		John P. Cunningham 1		
{dt lj	¹ Columbia 53236, ca273 52203, rc30	University, New 33, 1w2827, ta 331, jpc2181}0	York, USA a2507, acm @columbia.	2246 edu	
5	² Universit	ty of Oregon Or	egon USA		

jmurray9@uoregon.edu

1 Sequential Monte Carlo review

The weighted set of particles in SMC are obtained iteratively for t = 0, ..., T. For t = 0 we sample particles from a proposal distribution $\mathbf{x}_0^i \sim q(\mathbf{x}_0)$ and compute weights $w_0^i = \frac{f(\mathbf{x}_0^i)g(\mathbf{y}_0|\mathbf{x}_0^i)}{q(\mathbf{x}_0^i)}$. For t > 0, we first *resample* "ancestral indices" $a_{t-1}^i \in \{1, ..., N\}$, i.e., we choose particles according to their importance weights w_{t-1}^i . Next, we propose new states $\mathbf{x}_t^i \sim q(\mathbf{x}_t^i|\mathbf{x}_{t-1}^{a_{t-1}^i})$, append them to the previous resampled states, and compute updated importance weights $w_t^i = \frac{f(\mathbf{x}_t^i|\mathbf{x}_t^{a_{t-1}^i})g(\mathbf{y}_t|\mathbf{x}_t)}{q(\mathbf{x}_t^i|\mathbf{x}_t^{a_{t-1}^i})}$. The proposal distribution is an important design choice. One common choice is to set $q(\mathbf{x}_t|\mathbf{x}_{t-1}) = f(\mathbf{x}_t|\mathbf{x}_{t-1})$, known as the Bootstrap Particle Filter [2].

1.1 Sequential Monte Carlo pseudocode

Sequential Monte Carlo[5, 6, 3]

Require: proposal distribution $q(\mathbf{x}_t | \mathbf{x}_{t-1})$ from which we could sample and that can be evaluated **Require:** transition distribution $f(\mathbf{x}_t | \mathbf{x}_{t-1})$ [our rigid-body dynamics] that can be evaluated **Require:** emission distribution: $g(\mathbf{y}_t | \mathbf{x}_t)$ [our forward kinematics] that can be evaluated for t in 0 : T do if t=0 then propose initial states $\mathbf{x}_0^i \sim q(\mathbf{x}_0)$ compute importance weights $w_0^i = \frac{f(\mathbf{x}_0^i)g(\mathbf{y}_0|\mathbf{x}_0^i)}{q(\mathbf{x}_0^i)}$ else if $t \ge 0$ then resample indices $a_{t-1}^i \sim \text{Categorical}(w_{t-1}^i / \sum_l w_{t-1}^l)$ propose states $\mathbf{x}_t^i \sim q(\mathbf{x}_t^i | \mathbf{x}_{t-1}^{a_{t-1}^i})$ append state $\mathbf{x}_{1:t}^i = {\mathbf{x}_{1:t-1}^{a_{t-1}^i}, \mathbf{x}_t^i}$ compute importance weights $w_t^i = \frac{f(\mathbf{x}_t^i | \mathbf{x}_t^{a_{t-1}^i})g(\mathbf{y}_t | \mathbf{x}_t^i)}{g(\mathbf{x}_t^i | \mathbf{x}_t^{a_{t-1}^i})}$

Workshop on Differentiable Vision, Graphics, and Physics in Machine Learning at NeurIPS 2020.

end if end for sample last index $b_T^i \sim \text{Categorical}(w_T^i / \sum_l w_T^l)$ return trajectory $\mathbf{x}_{1:T}^{b_T} = 0$

1.2 Multiple importance-weighted SMC samplers

To improve torque inference, we propose the following algorithm. We run M SMC samplers, and for each sampler in $m = 1, \ldots, M$ we compute the expectation for the test function $h(\cdot)$, e.g., posterior mean or variance, over all particles. Then, we compute an outer-level expectation \hat{h}_{agg} over all SMC samplers,

$$\widehat{h}_{agg} = \sum_{i=1}^{M} \frac{\widehat{p}(\boldsymbol{y}_{0:T})[\boldsymbol{u}^{m}]}{\sum_{n=1}^{M} \widehat{p}(\boldsymbol{y}_{0:T})[\boldsymbol{u}^{n}]} \widehat{h}(\boldsymbol{u}^{m}), \quad \widehat{h}(\boldsymbol{u}^{m}) := \sum_{i=1}^{N} w_{T}^{m,i} h(\mathbf{x}_{0:T}^{m,i}), \tag{1}$$

where u^m denotes all the random variables generated in SMC sampler m, and $\hat{p}(\boldsymbol{y}_{0:T})[\boldsymbol{u}^m]$ its log-marginal likelihood estimate. To this end, we have implemented a GPU-supported parallel SMC sampling in PyTorch. Our approach could be seen as a variant of the nested SMC method [4]. Moreover, for each sampler, we run Forward-Filtering Backward-Sampling [1].

Figure 1: Successful state inference for the 3D arm model. Conventions as in Figure 2 in the main text except that each joint has two axes of rotation.

References

- [1] A. Doucet and A. M. Johansen. A tutorial on particle filtering and smoothing: Fifteen years later.
- [2] N. J. Gordon, D. J. Salmond, and A. F. Smith. Novel approach to nonlinear/non-gaussian bayesian state estimation. In *IEE proceedings F (radar and signal processing)*, volume 140, pages 107–113. IET, 1993.
- [3] G. Kitagawa. Monte carlo filter and smoother for non-gaussian nonlinear state space models. *Journal of computational and graphical statistics*, 5(1):1–25, 1996.
- [4] C. Naesseth, F. Lindsten, and T. Schön. Nested sequential Monte Carlo methods. volume 37 of *Proceedings of Machine Learning Research*, pages 1292–1301, Lille, France, 07–09 Jul 2015. PMLR.
- [5] C. Naesseth, S. Linderman, R. Ranganath, and D. Blei. Variational sequential monte carlo. In International Conference on Artificial Intelligence and Statistics, pages 968–977. PMLR, 2018.
- [6] L. Stewart and P. McCarty Jr. Use of bayesian belief networks to fuse continuous and discrete information for target recognition, tracking, and situation assessment. In *Signal Processing, Sensor Fusion, and Target Recognition*, volume 1699, pages 177–185. International Society for Optics and Photonics, 1992.