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Abstract

Convolutional neural networks for pose estimation are continuously improving in
identifying joints of moving agents from video. However, state-of-the-art algo-
rithms offer no insight into the underlying mechanics of articulated limbs. "Seeing"
the mechanics of movement is of major importance for fields like neuroscience,
studying how the brain controls movement, and engineering, e.g., using vision to
correct for errors in the action of a robotic manipulator. In the pipeline proposed
here, we use a convolutional network to track joint positions, and embed these
as the joints of a linked robotic manipulator. We develop a probabilistic physical
model whose states specify second-order rigid-body dynamics and the torques
applied to each actuator. Observations are generated by mapping the joint angles
through the forward kinematics function to Cartesian coordinates. For nonlinear
state estimation and parameter learning, we build on variational Sequential Monte
Carlo (SMC), a differentiable variant of the classical SMC method leveraging
variational inference. We extend with a distributed nested SMC algorithm, which,
at inference time, wraps multiple independent SMC samplers within an outer-level
importance sampler. We extract mechanical quantities from simulated data and
newly acquired videos of mice and humans, offering a novel tool for studying e.g.
biological motor control.

1 Introduction

Understanding the motion of 3D bodies by sight is a fundamental task for most biological and
artificial agents. While pose-estimation algorithms can now accurately estimate an articulated body’s
position, to robustly predict movement and understand how the brain controls it, one must still infer
the underlying Newtonian mechanics. Here we propose a reliable tool for making such inferences for
an articulated body from a sequence of images.

Our method, illustrated in Figure 1, starts from detecting joint positions via a convolutional network.
For a multi-view setup, we reconstruct the joints’ 3D positions using a Bundle Adjustment algorithm
[1]. We model the (noisy) joint positions with a hidden Markov model (HMM), whose dynamics
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Figure 1: A) Our tracking pipeline and probabilistic model. B) Inference with multiple independent
SMC samplers (left), embedded in an outer-level importance sampler (right).

include the nonlinear equations of motion and an appended stochastic torque process. The observation
model nonlinearly transforms joint angles into Cartesian coordinates.

The nonlinear dynamics and observation models involved lead to an intractable Bayesian inference
problem, calling for approximate solutions [3]. Furthermore, since we assume no knowledge of the
manipulator’s parameters such as link lengths and radii, and since we wish to allow for an arbitrarily
complex torque process, we need to accommodate large-scale parameter learning. Therefore, we
build on variational SMC [12, 7, 8], a differentiable variational inference method tailored to nonlinear
state-estimation and parameter learning. We improve the fidelity of torque inference with a nested
SMC scheme that wraps multiple independent SMC samplers within an outer-level importance
sampler. Our model can be interpreted as a stochastic differentiable physics engine, and we offer a
method to perform robust Bayesian inference over its full state.

One closely related line of work infers the Newtonian mechanics of non-articulated bodies from
video using approximate Bayesian inference while relying on convolutional networks for tracking or
segmentation [19, 21, 17]. We differ by concentrating on external torques and by using an alternative
inference strategy. For articulated bodies, state-of-the-art human pose-estimation algorithms fit a
geometric 3D human body model to single images [4] or use recurrent neural networks or optical
flow [5] to model videos. These models neither consider rigid-body dynamics nor perform Bayesian
state inference. Another relevant line of work uses deep imitation learning to reconstruct the motion
of robotic manipulators and humanoids by observing their joints’ state [20], which is estimated
from motion capture [10] or video [15]. We differ from imitation learning by performing Bayesian
inference over the state and external torques and learning the body model’s parameters.

2 Probabilistic rigid-body mechanics model

We define a rigid-body including K joints with a known geometry, and learnable parameters φ
including link shape parameters and masses. We describe the configuration of the rigid-body using
joint angles as generalized coordinates [18]. According to the angular version of Newton’s second
law, a.k.a "forward dynamics", θ̈ =D(θ)−1(τ − c(θ)− h(θ, θ̇)), where θ, θ̇, θ̈ ∈ RK are vectors
representing the joint angles, angular velocities and angular acceleration, and τ ∈ RK the joint
torques. D(θ) ∈ RK×K is the inertia tensor, c(θ) ∈ RK the gravity load, and h(θ, θ̇) ∈ RK the
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Coriolis and centripetal forces. For specific rigid bodies, we compute the entries ofD(·), c(·),h(·)
through the Euler-Lagrange method from classical mechanics, which is a the equivalent of Newton’s
laws of motion for generalized coordinates [18], using SymPy [11].

We introduce a HMM with a transition distribution defined by rigid-body dynamics and an emission
distribution mapping joint angles to Cartesian coordinates. We represent the dynamics with a blocked
state vector x, such that the current state is a function of just the previous state

x =

τθ
θ̇

 , ẋ =

 f(τ )

θ̇

D(θ)−1(τ − c(θ)− h(θ, θ̇))

 (1)

where the forward dynamics is emphasized in red, and the torque dynamics model f(τ ) is a user
choice. Here, we chose to model the torques from an Ornstein-Uhlenbeck process to ensure that they
remain bounded:

τ̇ = −λτ + στη, λ > 0, η ∼ N (0, I). (2)
An interesting generalization that we leave for future work is to let f(τ ) be a Gaussian Process
or a recurrent neural network. We evolve the system using Euler-Maruyama integration (xt =
xt−1 + δtẋt−1) and can write a distribution over the current state given the previous state

xt ∼ f(xt|xt−1) = N

xt
∣∣τ t−1 + δt(−λτ t−1)

θt−1 + δtθ̇t−1

θ̇t−1 + δtθ̈t−1

 ,

δ2tσ2
τI 0 0

0 εI 0
0 0 εI

 , (3)

where we introduced diagonal covariance terms ε to avoid a degenerate distribution, implicitly admit-
ting that our physical model might not be a perfect description of the system. The emission model
from states to observations implements the forward kinematics function µy(θ,φ) that computes the
Cartesian coordinates of each joint given the angles and link lengths (specified in Danevit-Hartenberg
notation [18])

yt ∼ g(yt|xt) := N (yt|µy(θ,φ), σy · I), (4)

In summary, our HMM is defined by p(x0:T ,y0:T ) = f(x0)︸ ︷︷ ︸
initial

∏T
t=1 f(xt|xt−1)︸ ︷︷ ︸

transition

∏T
t=0 g(yt|xt)︸ ︷︷ ︸

emission

,

where x0:T := {x0,x1, ...,xT } and y0:T := {y0,y1, ...,yT }.

3 Inference and learning via variational sequential Monte Carlo

The time series of observations y0:T includes the joint coordinates, obtained from a pose-estimation
algorithm taking video as its input. The goal is to infer the posterior distribution over the latent
(unobserved) states p(x0:T |y0:T ) and maximize the log marginal likelihood log p(y0:T ) with respect
to the articulated-body’s constant parameters such as link lengths or masses. Due to the nonlinearities
in the transition and emission distributions, computing the posterior analytically is intractable. We
propose to leverage variational sequential Monte Carlo (VSMC) [13, 7, 8] for inference and learning.
VSMC combines sequential Monte Carlo (SMC) [14] with variational inference [2] to approximate
the posterior. SMC approximates the sequence of target distribution p(x0:t|y0:t) for t = 0, ..., T
using N weighted particles

p(x0:t|y0:t) ≈ p̂(x0:t|y0:t) :=

N∑
i=1

wit∑
l w

l
t

δxi
0:t
. (5)

The weighted set of particles are obtained iteratively for t = 0, . . . , T by resampling (stochastically
choosing samples from xi1:t−1 according to their weights), propagating (generating new samples
xit) and weighting (computing wit). The full SMC algorithm is summarized in the Appendix. SMC
provides an unbiased estimate of the marginal likelihood p̂(y0:T ) =

∏T
t=0

1
N

∑N
i=1 w

i
t.

Variational SMC [13] interprets a draw from Eq. (5) as a sample from the variational approximation
to the posterior p(x0:t|y0:t). This interpretation allows learning parameters both in the probabilistic
mechanics model and in the proposal distribution, thereby improving inference efficiency. Variational
SMC optimizes E[log p̂(y0:T )], a differentiable lower bound on the true log marginal likelihood
log p(y0:T ), using stochastic gradient descent. For a thorough introduction to VSMC and SMC we
refer to [14, 13]. To improve torque inference, we leverage GPUs to run multiple independent SMC
samplers with an outer-level importance sampler (see the Appendix for details).
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4 Results

Figure 2: A) Recovering ground-truth angular dynamics and torques from noisy joint coordinates. B)
Reconstructing human planar arm motion and extracting angular dynamics and torques.

Planar arm (simulated data). We simulate noisy joint coordinates of a probabilistic planar arm
model, and show that we can reconstruct the arm’s trajectory in this Video, while recovering the
ground-truth mechanical states including the external torques, as seen in Fig.2. We initialized the
unknown link lengths by the median empirical norm between joints, and further refined them in
learning (masses were held fixed). Moreover, we initialized the joint angles near their maximum-
likelihood value for the first frame, and found that it increased the effective sample size both within
each SMC sampler and between independent SMC samplers at the outer-level importance sampling.

Real human planar arm motion. We trained a ResNet-50 in DeepLabCut [9] to track the shoulder,
elbow and wrist in videos of humans, given ≈ 350 labeled frames. For a test video including a planar
motion, we initialize the link lengths near the empirical median stick length, and initialize the angles
with their maximum-likelihood value for the first frame. We find a match between the observed 2D
joints and the our model’s predictions, as seen in the Video. For each frame, we extract previously
inaccessible quantities including torques, inertia tensor, and gravity load. We expect an improved
inference performance once we improve our initial tracking performance.

3D arm model (simulated data). We developed a new probabilistic model for a robotic arm in
3D. In our model, each joint has two axes of rotation - yaw and pitch, so the state-vector is twice
larger than in the 2D case. We successfully recover the 3D arm’s state from noisy observations (see
Figure 1 in the Appendix). Note that our torque inference is slightly less accurate than in the 2D case,
potentially stemming from poor scaling of SMC with the state’s dimension [14].

3D mouse reaching. In this experiment, a mouse is moving a planar joystick to obtain a sucrose
reward, while neural activity in the motor cortex is recorded through calcium imaging. We film the
mouse from two views and shave its forelimb to better expose the joints for tracking using ResNet-50.
As a first analysis, we fit a 3D forward-kinematics model with random-walk angular dynamics using
a forward-filtering backward-sampling approach [3], learning stick lengths. This simple dynamics
model fits the observations well, as seen in this Video.

5 Conclusions

To understand biological movement, we need to explain it from first physical principles like torques
applied to joints. In this work we proposed to combine pose-estimation networks with articulated-
body models and approximate Bayesian inference. We plan to extend our approach to mechanically
model stroke patients’ arm reaching impairments [6], and to dissect the role of different neural
populations within the motor cortex in mice [16].
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