
Appendix A

This appendix provides additional analysis of our differentiable HDR synthesis layer with the radiometric
calibration methods.

Figure 3: Comparison of the consistency of estimated inverse CRFs. N denotes the order of the
polynomial curve, and the σ indicates the deviation value of inverse CRF taken from a single camera

Radiometric calibration comparison

To clarify the strength of our differentiable non-parametric radiometric calibration, we compared the radiometric
calibration results between parametric and non-parametric methods. We implemented the polynomial curve
fitting approach [17] as a parametric method. The method starts with using initial exposure ratios. After the
iterative optimization, the coefficients of the inverse CRF and the exposure ratios are estimated by minimizing
the objective function. In detail, the polynomial curve is formulated as follows:

lnE = g(Z) =

K∑
k=0

ckZ
k (8)

where g denotes an inverse CRF, and Z denotes a pixel intensity value, E denotes a luminance value, and ck
denotes coefficients of k-th polynomial curve. Note that the Z is normalized in the range of [0,1]. The objective
function to estimate the inverse CRF can be formulated as a least-square problem as follows:

ε =

N∑
i

P−1∑
j

[
K∑
k

ckZ
k
i,j −Rj,j+1

K∑
k

ckZ
k
i,j+1

]2

(9)

where ε denotes an objective function, Zi,j denotes a pixel intensity value of i-th pixel with j-th exposure value.
N and P is the total number of pixels and exposure values, respectively. Rj,j+1 denotes initial estimates of
exposure ratio between j-th and j + 1-th exposure values. The least-square optimization iteratively solves the
objective function to optimize Rj,j+1 and the coefficients ck, until the convergence.
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With the recovered inverse CRF g, the differential coefficients can be obtained as follows :

∂g

∂Z
=

N∑
k=1

kckZ
k (10)

We conducted the comparison of estimated inverse CRFs on the VDS dataset [12], of which the images were
captured with a Nikon D700 camera of 4256× 2832 pixels resolutions. Since this dataset consists of images
taken by the single camera, the estimated inverse CRFs from the images must have concentrated configuration.
Therefore, we verified the consistency of the estimated inverse CRFs for each method. In the experiment, we have
set the order of the polynomial curve to be 3 and 5. Fig. 3 shows the comparison result of different radiometric
calibration approaches and SingleHDR [14], which is the state-of-the-art method. We appended ground truth
results, which were generated with ground truth images with different approaches.

For the parametric approach, both ground truth and estimated results show non-consistent outputs, regardless
of the order of the polynomial curve. In contrast, estimated results using our model has the least deviation
even compared to the SingleHDR [14]. Furthermore, Chen et al.[3] analyzed that modern cameras do not have
exotic structures. Based on these insights, we applied the differentiable non-parametric radiometric calibration
approach. Note that we utilized the trained model as the retraining of the SingleHDR model using the VDS
dataset [12] is limited.
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Appendix B

This appendix describes the detailed structure of our networks and the training process.

Figure 4: Sub-networks architecture. The global network focuses on minimizing the difference of
histograms between the generated and target EV image, and the local network focuses on generating
gradient-based edge structures. We facilitate the hidden state ht of t-the recursion to feed into the
bottleneck layers of the global and local networks for the recurrent process. We then concatenate the
input image, relative EV image, and edge map to feed into the refinement network to focus on the
integration process.

Our model is made up of the recurrent-up and recurrent-down networks, which share the same sub-network
structures. We adopted 5-level and 4-level U-Net structure [21] to construct each sub-network as shown in Fig. 4.
Each level consists of 2 convolutional layers with 2× 2 average pooling layers for the encoding layers and 2× 2
bilinear upsampling layers for the decoding layers. We implemented the Tanh activation for the last layers
of the global and refinement networks, and the sigmoid activation for that of the local network. All the other
convolutional layers were followed by the Swish activation [19]. The conditional instance normalization (CIN)
[6] was used in decoding layers of global and local networks. On the other hand, the instance normalization
(IN) [24] was used for decoding layers of the refinement network. We further implemented the convolutional
gated recurrent unit (Conv-GRU) [22] for the bottleneck layers of the global and local networks, which were
preceded by the encoding layers. For the sub-networks, the global and local networks are trained in advance for
10k iterations, then we jointly trained the entire network, including the refinement network for additional 70k
iterations.
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Appendix C

This appendix gives extended experimental results.

Figure 5: Case analysis of correlations between the multi-exposure stack reconstruction and the
HDR reconstruction on the VDS dataset. The experiment was conducted with Lee et al.[13] and
our method. The result shows that two factors (stack reconstruction accuracy, HDR reconstruction
accuracy) have a weak correlation (suboptimal, optimal).

Table 2: Quantitative comparison of stack reconstruction results. Relative EV+1 indicates the average
value of three recursive recurrent-up results and Relative EV-1 indicates the average value of three
recurrent-down results.

Method PSNR (dB) SSIM MS-SSIM
m± σ m± σ m± σ

Relative
EV +1

Proposed 30.292±3.725 0.952±0.050 0.989±0.009
Deep recursive HDRI [13] 30.142±2.873 0.955±0.036 0.986±0.010

Relative
EV -1

Proposed 30.403±3.601 0.940±0.038 0.985±0.011
Deep recursive HDRI [13] 30.483±3.836 0.936±0.044 0.982±0.014

Multi-exposure stack reconstruction

We verified the relations between the multi-exposure stack reconstruction and the HDR reconstruction. Specifi-
cally, we evaluated PSNR, SSIM, and MS-SSIM results of reconstructed stacks by our method and the previous
stack-based method [13]. The previous approach [13] focused on reconstructing the multi-exposure stack, and
hence, reproducing stacks with high PSNRs, SSIMs, and MS-SSIMs. However, with the results of Fig. 5 and
Table 2, our method reproduced similar PSNR, SSIM, and MS-SSIM with the previous method, but achieved
much higher HDR-VDP-2 scores. The results indicate that focusing on the exposure transfer task might lead to
suboptimal generation performances. Furthermore, our method does not include any adversarial loss; however,
as the direct relation between pixel values was imposed during the training, we achieved the result of the highest
quality, thereby providing higher HDR-VDP-2 scores.
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Table 3: Performance of various configurations on the VDS dataset [12]
Method HDR-VDP-2 PSNR (dB)

Baseline 49.502±6.519 25.864±3.013
+ Recurrent network 52.344±6.852 27.652±3.189
+ Conditional instance normalization 53.020±5.110 27.996±2.779
+ Image decomposition 54.548±6.455 28.542±3.500
+ Differentiable HDR synthesis layer 57.813±5.185 29.592±3.596
+ Contextual bilateral loss 58.807±5.413 30.347±3.663

Ablation studies

We evaluated the effectiveness of the individual components in our model on the VDS dataset, as shown
in Table 3. We added modules incrementally on the U-Net structure [21], which is a baseline of our model
with 5-level and 2 convolutional layers for each level, and evaluated with the HDR-VDP-2 score. The overall
results show that our method using all modules improved 9.305 and 4.483 with HDR-VDP-2 score and PSNR,
respectively.

Recurrent network First, we added the recurrent module, the Conv-GRU [22], to be located in the bottleneck
layer. We utilized the hidden state of each recurrent network to convey the important state variables, such
as recursion numbers to the network. Table 3 shows that recurrent module could increase both the HDR
reconstruction performance with the HDR-VDP-2 score and multi-exposure stack reconstruction with PSNR by
2.842 and 1.788, respectively.

Conditional instance normalization We demonstrated the effectiveness of the conditional instance normal-
ization layer with a comparison experiment with the instance normalization layer [24]. We confirmed that the
conditional instance normalization layer decreases the standard deviation of the reconstruction error.

Image decomposition We decomposed input images into global and local components. To verify the effective-
ness of our structure, we compared the PSNR result of the decomposition network with that of the baseline
network, as shown in Table 3. We trained both networks for the same iterations, and the quantitative result of
PSNR shows that decomposition decreases the reconstruction error.

Differentiable HDR synthesis layer The proposed differentiable HDR synthesis layer could reconstruct the
target HDR image without any learnable parameters in the layer. The mean of HDR-VDP-2 score was significantly
increased by up to 3.265, and the standard deviation was decreased by up to 1.270. Hence, the differentiable
HDR synthesis layer guided the network to generate a high-quality HDR image while stabilizing the training
process.

Contextual bilateral loss To enhance the perceptual quality of the generated multi-exposure stack, we added
contextual bilateral loss [27] to fine-tune our networks. This loss alleviated the limitations of using ghosting
artifacts induced by applying L1 loss on the misaligned image dataset. Table 3 shows that contextual bilateral
loss fine-tunes the outputs of networks.

Additional qualitative results

In this section, we present qualitative results of reconstructed HDR images using the Reinhard tone mapping
operator [20]. Fig. 6 shows qualitative results using the VDS dataset and HDR-eye dataset with six recent deep
learning-based HDR reconstruction methods. We further evaluated comparison results with the state-of-the-art
method of both direct reconstruction method (SingleHDR) and multi-exposure stack method (Deep recursive
HDRI), as shown in Fig. 7. The results present that our method preserves details on the over-exposed and
under-exposed region while compensating local inversion artifacts.
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Figure 6: Comparison of tone-mapped HDR images from 6 different HDR reconstruction approaches.
The loss of image details in over-exposed and under-exposed regions occurs with the SingleHDR,
ExpandNet, and HDRCNN. The DrTMO and Deep recursive HDRI suffer from the local inversion
artifacts. Nonetheless, our method reduces local inversion artifacts and preserves image details and
contrasts in overexposed regions.

Figure 7: Qualitative results on the RAISE dataset. Scores below each image indicates corresponding
HDR-VDP-2 scores.

12



Appendix D

In this section, we present details of our implementations with a differentiable HDR synthesis layer using both
the parametric and non-parametric methods. We referenced MATLAB HDR toolbox [1] with the implementation
and to generate matching results. We further provide the implementation of histogram loss used in the global
network.

Autograd implementation of the differential HDR synthesis Layer

Non-parametric approach

i m p o r t t o r c h
from t o r c h . a u t o g r a d i m p o r t F u n c t i o n

d e f t a b l e d F u n c t i o n ( img , t a b l e ) :
’ ’ ’
R e t u r n s remapped v a l u e s r e g a r d i n g t h e t a b l e f u n c t i o n
I n p u t :

− img : an LDR image or s t a c k wi th v a l u e s i n [ 0 , 2 ^ n B i t − 1]
− t a b l e : t h r e e f u n c t i o n s f o r remapping image p i x e l s v a l u e s

Outpu t :
− img_out : a remapped image

’ ’ ’
p l f = P i e c e w i s e _ L i n e a r . a p p l y
img_out = t o r c h . z e r o s _ l i k e ( img )

num_images , c h a n n e l s = img . shape [ : 2 ]
f o r i i n r a n g e ( num_images ) :

f o r j i n r a n g e ( c h a n n e l s ) :
img_out [ i , j , : , : ] = p l f ( img [ i , j , : , : ] , t a b l e [ j , : ] )

r e t u r n img_out

c l a s s P i e c e w i s e _ L i n e a r ( F u n c t i o n ) :
@ s t a t i c m e t h o d
d e f f o r w a r d ( c tx , x , w ) :

’ ’ ’
R e t u r n s remapped v a l u e s r e g a r d i n g t h e t a b l e f u n c t i o n
I n p u t :

− x : an LDR image / w: an t a b l e d f u n c t i o n [ f l o a t t y p e ]
Outpu t :

− r e s u l t : an remapped image
’ ’ ’
q u a n t i z e d _ x = x . long ( )
r e s u l t = w[ q u a n t i z e d _ x ]

index_x = x . f l a t t e n ( ) . l ong ( )
s l o p e = t o r c h . t e n s o r (

[ i ndex_x [ 0 ] ] + [ i−j f o r i , j i n z i p (w [ 1 : ] , w) ] ,
d t y p e = t o r c h . f l o a t )

s l o p e _ x = s l o p e [ index_x ] . r e s h a p e ( x . shape )

c t x . s a v e _ f o r _ b a c k w a r d ( s l o p e _ x )
r e t u r n r e s u l t

@ s t a t i c m e t h o d
d e f backward ( c tx , g r a d _ o u t p u t ) :

r e s u l t , = c t x . s a v e d _ t e n s o r s
r e t u r n g r a d _ o u t p u t ∗ r e s u l t , None
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Parametric approach

i m p o r t t o r c h
i m p o r t numpy as np
from t o r c h . a u t o g r a d i m p o r t F u n c t i o n

d e f P o l y F u n c t i o n ( img , pp ) :
’ ’ ’
R e t u r n s remapped v a l u e s r e g a r d i n g t h e t a b l e f u n c t i o n
I n p u t :

− img : an LDR image or s t a c k wi th v a l u e s i n [ 0 , 2 ^ n B i t − 1]
− pp : c o e f f i c i e n t v a l u e s f o r t h e e s t i m a t e d p o l y n o m i a l f u n c t i o n

Outpu t :
− img_out : a remapped image

’ ’ ’
po ly = P o l y n o m i a l . a p p l y
img_out = t o r c h . z e r o s _ l i k e ( img )

num_images , c h a n n e l s = img . shape [ : 2 ]
f o r i i n r a n g e ( num_images ) :

f o r j i n r a n g e ( c h a n n e l s ) :
img_out [ i , j , : , : ] = po ly ( img [ i , j , : , : ] , pp [ j , : ] )

r e t u r n img_out

c l a s s P o l y n o m i a l ( F u n c t i o n ) :
@ s t a t i c m e t h o d
d e f f o r w a r d ( c tx , x , pp ) :

’ ’ ’
R e t u r n s remapped v a l u e s r e g a r d i n g t h e t a b l e f u n c t i o n
I n p u t :

− x : an LDR image / pp : c o e f f i c i e n t s o f t h e p o l y n o m i a l f u n c t i o n
Outpu t :

− r e s u l t : an remapped image
’ ’ ’
r e s u l t = np . p o l y v a l ( pp , x )
c o e f f _ l e n g t h = pp . shape [ 0 ]

d e r _ p o l y = t o r c h . t e n s o r ( [ pp [ i ]∗ i f o r i i n r a n g e ( c o e f f _ l e n g t h ) ] ) # D i f f e r e n t i a l c o e f f i c e n t s
s l o p e = t o r c h . t e n s o r ( np . p o l y v a l ( de r_po ly , t o r c h . l i n s p a c e ( 0 , 1 , 2 5 6 ) ) )

index_x = x . f l a t t e n ( ) . l ong ( )
s l o p e _ x = s l o p e [ index_x ] . r e s h a p e ( x . shape )

c t x . s a v e _ f o r _ b a c k w a r d ( s l o p e _ x )
r e t u r n r e s u l t

@ s t a t i c m e t h o d
d e f backward ( c tx , g r a d _ o u t p u t ) :

r e s u l t , = c t x . s a v e d _ t e n s o r s
r e t u r n g r a d _ o u t p u t ∗ r e s u l t , None
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Implementation of the histogram loss

i m p o r t t o r c h

d e f e x t r a c t _ h i s t o g r a m ( x , min_va lue =1 , max_value = 2 5 5 ) :
’ ’ ’
R e t u r n s c o l o r h i s t o g r a m i n t h e i n p u t image
I n p u t :

− x : a q u a n t i z e d LDR image x which has v a l u e s i n [ 0 , max_value ]
Outpu t :

− h i s t o g r a m : t h e c o l o r h i s t o g r a m of t h e i n p u t image
’ ’ ’
a s s e r t min_va lue > 0
a s s e r t t y p e ( min_va lue ) == i n t
a s s e r t t y p e ( max_value ) == i n t

b a t c h _ s i z e , c , h , w = x . shape
h i s t o g r a m = t o r c h . z e r o s ( ( b a t c h _ s i z e , c , max_value + 1 ) )
v a l u e = t o r c h . a r a n g e ( 0 , max_value + 1 ) . f l o a t ( )

u p d a t e s = x . view ( b a t c h _ s i z e , c , −1)
i n d i c e s = u p d a t e s . l ong ( )
h i s t o g r a m = h i s t o g r a m . s c a t t e r _ a d d (−1 , i n d i c e s , u p d a t e s )

r e t u r n h i s t o g r a m [ . . . , min_va lue : ] / v a l u e [ min_va lue : ]
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