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Abstract

Recently, high dynamic range (HDR) image reconstruction based on the multiple
exposure stack from a given single exposure utilizes a deep learning framework.
These conventional networks focus on the exposure transfer task to reconstruct
the multi-exposure stack. However, they often fail to fuse the multi-exposure
stack into a perceptually pleasant HDR image as the inversion artifacts occur. We
tackle the problem in stack reconstruction-based methods by proposing a novel
framework with a fully differentiable high dynamic range imaging (HDRI) process.
By explicitly using the loss, which compares the network’s output with the ground
truth HDR image, our framework enables a neural network that generates the
multiple exposure stack for HDRI to train stably. Our differentiable HDR synthesis
layer helps the deep neural network to train to reconstruct multi-exposure stacks
while reflecting the precise correlations between multi-exposure images in the
HDRI process. In addition, our network facilitates the characteristic of the exposure
transfer task to adaptively respond to recursion frequency. The experimental results
show that the proposed network outperforms the state-of-the-art results.

1 Introduction

Deep neural networks, especially convolutional neural networks (CNNs), have shown their significant
role in reconstructing the HDR image. Two primary approaches exist in reconstructing the HDR
image: direct reconstruction methods [7, 16, 14] and multi-exposure stack-based synthesis methods
[8, 12, 13]. Direct reconstruction aims to recover a HDR image (32bits/pixel) from a given single
low dynamic range (LDR) image (8bits/pixel). In this case, a large number of LDR-HDR image
pair data is required to train a deep neural network [8, 11, 14]. On the other hand, HDR synthesis
with the multi-exposure stack focuses on transferring exposures to generate the multi-exposure stack
accurately. These approaches alleviate the dataset quantity problem as they require much fewer scenes
with multi-exposure stack [12, 13]. However, they suffer from severe local inversion artifacts due to
the limitations of networks being trained only with the supervision of the ground truth multi-exposure
stack. Therefore, the conventional multi-exposure stack-based approaches had difficulties training the
network in an end-to-end manner to reflect the whole HDRI process.

We propose a novel differentiable HDR image synthesis process, which enables the end-to-end training
procedure and alleviates the generation of the local inversion artifacts. Specifically, we propose a novel
framework with a differentiable HDRI synthesis method. To overcome the conventional limitations of
multi-exposure stack-based HDR synthesis, we modify the discrete camera response function (CRF),
which converts pixel intensity values into luminance values in the standard HDRI, to be differentiable
with the linear approximation technique. Moreover, we incorporate the image decomposition method
for reconstructing the HDR image to focus on preserving the image details in exposure transfer tasks.
We disentangle exposure transfer tasks with the two-pathway approach, which adjusts the global
tone and reconstructs the local structure of the image separately. In addition we propose a recurrent
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Figure 1: The overall structure
of the proposed framework. Our
model consists of recurrent-up
and recurrent-down networks
with the differentiable HDR syn-
thesis layer. Given an input LDR
image, the multi-exposure im-
age stack is generated with recur-
sions. Then, the generated stack
is synthesized to reconstruct the
HDR image with the estimated
camera response function using
Eq. (1).

approach in the multi-exposure stack generation to facilitate the recursive process by conveying the
hidden state vectors.

2 Differentiable HDR Image Synthesis using Multi-exposure Images

This section describes our differentiable HDR synthesis framework that trains both the exposure trans-
fer process for multi-exposure stack generation and the HDR image synthesis in end-to-end structure,
as shown in Fig. 1. We first generate the multi-exposure stack with the recursive process using the
recurrent-up and recurrent-down networks. We then synthesize the stack with the differentiable HDR
synthesis layer to reconstruct the HDR image and train the network in the end-to-end structure.

Differentiable HDR synthesis layer Debevec and Malik [5] proposed the HDRI pipeline that
estimates the CRF using the non-parametric radiometric calibration, which is commonly used. From
a given multi-exposure stack, the CRF or inverse CRF estimation and the luminance value can be
obtained as follows:

O =

N∑
i

P∑
j

[g(Zij)− lnEi + EVj ]
2 + λ

Zmax−1∑
z=Zmin+1

g′′(z)2, (1)

lnEi = g(Zij)− EVj , (2)

where O denotes an objective function, g denotes an inverse CRF, and Zij , Ei, EVj denote the pixel
intensity value of i-th pixel with j-th exposure value, the luminance value of i-th pixel, and the j-th
exposure value, respectively. Zmin and Zmax indicate minimum and maximum intensity values of
given LDR images. N and P are the numbers of images and exposure values of the stack. The second
term of the objective function regularizes the CRF to be smoothened with the hyperparameter λ. By
minimizing the objective function, we can obtain the discrete inverse CRF of g. With the recovered
inverse CRF g, the pixel intensity value can be remapped to the luminance value as Eq. (2). However,
as inverse CRF has the form of the non-differentiable function, we transform the inverse CRF with a
linear approximation technique.

Let an inverse CRF be g = [p0, p1, · · · , pK ] with K denoting the maximum intensity value of
multi-exposure images. We define the derivative of the linearized function ĝ as follows:

∂ĝ

∂Zij
=

{
g(0), if Zij = 0
g(Zij)− g(Zij − 1), otherwise. (3)

Fig. 2 illustrates our approach to piecewise-linearize the inverse CRF. With the sampled pixels using
the Grossberg and Nayar’s method [9], we piece-wise linearize the function, as shown in Eq. (3)
regarding the prior assumptions of the inverse CRF [5]. The gradients from the loss of luminance
values impose constraints on the generated multi-exposure stack to have correlated values with
Eq. (3). Hence, our novel framework enables the networks to accomplish both the multi-exposure
stack generation task and the HDR synthesis task, with the optimal objective of reconstructing high-
quality HDR images. See Appendix A for the explicit results that demonstrates the consistency and
the robustness of our method. In addition, see Appendix D for the implementation of the differentiable
HDR synthesis layer.
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Figure 2: Conceptual diagram of the proposed piece-wise linearization for the CRF. We sample pixels
from the multi-exposure stack to aggregate pixels of the same coordinate with different exposure
values. We then estimate the inverse CRF with Eq. (1) and convert the function into a differentiable
linear form.

Recursive multi-exposure stack generation We incorporate the recursive generation of the multi-
exposure image stack with the prior knowledge of the exposure manifold space [13]. Our model
utilizes recurrent-up and recurrent-down networks, which contains three sub-networks of U-Net
structures [21] : the global, local, and refinement networks. The global and local networks are
constructed with 5-level and 4-level structures, respectively, with 2 convolutional layers for each level.
In addition, we implement the Swish activation [19] on each convolution layer and the convolutional
gated recurrent unit (Conv-GRU) [22] in the bottleneck of the global and local networks. We impose
the global and local networks to focus on adaptively responding to the number of recursions, and the
refinement network to focus on integrating the global and local components, which are histograms
and gradient-based edge structures of a target LDR image, respectively. See Appendix B for The
detailed structure and the training process.

Training The recurrent-up and recurrent-down networks are trained separately with a given single
LDR image to generate the multi-exposure stack recursively. Specifically, the global network is trained
with the pixel-wise L1 loss (L1) and histogram loss (Lhist) to constraint the network to generate the
image with a similar global tone to the target image. The local network is trained with pixel-wise
L1 loss (Ledge) on edge maps computed with Canny edge detector [2] of σ = 2. The refinement
network is trained with L1 loss (L1), the contextual bilateral loss (LCoBi) [27], and the HDR loss
(LHDR). We used a tone-mapped HDR loss with µ-law to stabilize the training process [25]. Note
that LCoBi [27] alleviates the ghosting artifacts due to the misaligned images by minimizing the
distances between the matching features extracted from the 3-rd and 4-th layer of the pre-trained
VGG-19 network [23] with the bilateral filtering. Overall loss functions are formulated as follows:

Lglobal = λ1L1 + λ2Lhist =
λ1

N · E

E∑
e

N∑
i

|Îei − Iei |+
λ2
L · E

E∑
e

L∑
l

|cntl(Îe)− cntl(Ie)| (4)

Llocal = λ3Ledge =
λ3

N · E

E∑
e

N∑
i

|Êe
i − edge(Iei )| (5)

Lrefine = λ4L1 + λ5LHDR + λ6LCoBi (6)

=
λ4

N · E

E∑
e

N∑
i

|Îei − Iei |+
λ5
N

N∑
i

|log 1 + µĤi

1 + µHi
|+ λ6

M

M∑
j

min
k

(Dpj ,qk + wsD′pj ,qk) (7)

where N , E, L, and M denote the number of pixels, exposure values, intensity levels, and features
respectively, and for all the equations, ·̂ represents the prediction of the network. Iei denotes the i-th
pixel value in image I of the exposure value e, and cntl(·) indicates the number of pixels which has a
rounded down intensity l in the input image I . edge(·) extracts gradient-based edge maps from the
image I , and Ei denotes the i-th pixel value in predicted edge map. Hi is a pixel luminance in the
HDR image, which is derived from the Eq. (2), and µ is the compression parameter of the HDR image,
where we set the value with 5000. Dp,q indicates the sum of cosine distances between all the matched
features of p and q, and D′p,q indicates spatial coordinate distance. Note that j and k indicate indices
of the matched feature of p and q respectively. We set the hyperparameters λ1 = λ3 = λ4 = λ5 = 1
and λ2 = λ6 = 0.1 in our experiments to stably train the networks. See Appendix D for the detailed
implementation of the histogram loss.
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Table 1: Quantitative comparison of proposed and conventional HDR reconstruction methods. We
measured the HDR-VDP-2 score [15] for synthesized HDR images.

Method Training dataset
quantity

VDS HDR-Eye RAISE
m± σ m± σ m± σ

Proposed 48 scenes 58.807±5.413 55.914±1.917 59.493±3.420
HDRCNN 3,700 scenes 53.031±4.957 50.804±5.790 57.154±3.642
DrTMO 1,043 scenes 55.227±4.662 51.800±5.933 57.645±4.028
Deep recursive HDRI 48 scenes 56.347±3.492 52.832±2.944 57.570±3.697
ExpandNet 1,013 scenes 44.720±9.432 50.428±4.493 54.717± 1.998
SingleHDR 10,289 scenes 55.237±4.487 54.509±3.714 59.304± 3.541

3 Experimental Results

Datasets We trained our model on the VDS dataset [12], where the training set has 48 multi-exposure
stacks, and the testing set has 48 stacks. In addition, we evaluated our model on the HDR-Eye dataset
[18], and the RAISE dataset [4]. Input images were upscaled or downscaled into 256 × 256 pixel
resolutions by the Lanczos interpolation method [10], and all the LDR images were in the sRGB
color space.

Implementation For training the recurrent-up and recurrent-down networks, we chose the gradient
centralized Adam optimizer [26] with the learning rate of 1e−4. The momentum parameters of β1
and β2 were set to 0.5 and 0.999, respectively. Our model was trained on two GTX Titan X GPUs for
four days to reach 80k iterations.

Evaluation metrics We evaluated the quality of HDR image reconstruction with the HDR-VDP-2
score [14–16]. The experiments were conducted under the same process provided with the state-of-
the-art method [16, 14]. We scaled the target and generated HDR images to match the 0.1 and 99.9
percentiles before measuring the HDR-VDP-2 score.

Comparison with the state-of-the-art methods The comparison evaluations were performed with
6 recent deep learning-based methods, both direct methods (HDRCNN [7], ExpandNet [16], Sin-
gleHDR [14]) and multi-exposure stack-based methods (DrTMO [8], Deep recursive HDRI [13])
as benchmarks. The interchangeability of training datasets for direct methods and multi-exposure
stack-based methods is limited as the direct methods need a large amount of LDR-HDR image pair
datasets, and the multi-exposure stack-based method requires an adequate amount of images of
different exposures. Therefore, we used pre-trained models for ExpandNet, HDRCNN, SingleHDR,
and DrTMO.

The size of training datasets across different methods was imbalanced, as shown in Table 1. Compared
to other models, our method was trained with much fewer scenes and outperformed both the direct
and multi-exposure stack-based methods with favorable HDR-VDP-2 scores on three datasets. The
result indicates that our method has a strong advantage in data efficiency. Moreover, we evaluated
multi-exposure stack reconstruction results in the Appendix C to present the strength of our model
toward exposure transfer tasks.

4 Conclusion

This paper presented a novel framework that generates both the multi-exposure stack and the HDR
image. We proposed a differentiable HDR synthesis layer with a deep learning framework that
converts the HDR synthesis process to be differentiable with the linear approximation technique.
Hence, our approach enabled an entire network to be trained to reconstruct HDR images with direct
supervision. Moreover, we used recurrent, and decomposition approaches for the multi-exposure
stack generation with the purpose to disentangle the exposure transfer task. The results show that our
framework achieved the state-of-the-art results for both direct and stack-based methods by removing
the severe local inversion artifacts and restoring the details regardless of image conditions. For the
future work, as we yielded impressive results regarding the relatively low PSNR, we will further
analyze the relationship between the multi-exposure stack generation and the HDR image synthesis
to optimize multiple tasks to be mutually complementary.
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