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Abstract

Inferring the 6DoF pose of an object from a single RGB image is an important
but challenging task, especially under heavy occlusion. While recent approaches
improve upon the two stage approaches by training an end-to-end pipeline, they
do not leverage local and global constraints. In this paper, we propose pairwise
feature extraction to integrate local constraints, and triplet regularization to integrate
global constraints for improved 6DoF object pose estimation. Coupled with better
augmentation, our approach achieves state of the art results on the challenging
Occlusion Linemod dataset, with a 9% improvement over the previous state of the
art, and achieves competitive results on the Linemod dataset.

1 Introduction

Estimating the 6DoF pose of an object is an important problem with applications in various domains
like robotics [1], augmented reality [2] and autonomous driving [3]. With the pervasion of inexpensive
RGB sensors, it is cost effective and highly beneficial to perform 6DoF pose estimation from a single
RGB image without using additional depth sensors.

Some studies [4][5] attempted to regress the 6DoF pose directly from the image, however, these
were not as competitive as recent two stage approaches. In the first stage of two stage approaches, a
correspondence estimator detects the object and estimates the 2D image projections of the 3D object
points (referred to as 2D keypoints). This establishes correspondences between the 2D and 3D points.
[6][7][8] used a CNN based architecture to segment out regions containing the object and regress the
2D keypoints from those regions. A recent study regressed direction vectors to the 2D keypoints from
the segmented regions of the object [9]. The 2D keypoints were then estimated from intersections of
pairs of direction vectors. This approach was found to be more robust to occlusions of the object.

In the second stage, a RANSAC based Perspective-n-Point(PnP) algorithm serves as a pose estimator
to predict the 6DoF object pose using the established 2D-3D correspondences. However, Hu et al. [10]
showed that RANSAC is sensitive to the ordering of the 2D-3D correspondences and computationally
costly when there are many of them. Further, the non-differentiable nature of the RANSAC based pose
estimator does not allow for end-to-end training of the two stage approaches with respect to the final
objective, namely the object pose. Hence, Hu et al. [10] proposed to replace the non-differentiable
RANSAC based pose estimator with a trainable neural network to estimate the 6DoF object pose.
Their end-to-end trainable model showed improved results compared to the two stage approach as
validated with two state of the art correspondence estimators [8] [9]. We follow up on their model
with [9] as the correspondence estimator as it shows superior performance and refer to it as SSPE.

While SSPE shows improved performance using end-to-end training, it does not utilize local and
global geometric constraints. In this work, we propose pairwise features to utilize local information
between direction vectors associated with the same 3D point, and triplet regularization to account
for the global geometry between pairwise features associated with different 3D points. Coupled
with increased masking augmentation, our model achieves state of the art results on the Occlusion
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Figure 1: Illustration of our network architecture (SSPE-ours). The correspondence estimator predicts
direction vectors to the 2D keypoints. Pairs of direction vectors are passed through a shared network
Φs to give pairwise features which are aggregated using an aggregator Λ, and passed through a second
network Φg to predict the pose. The color of the pairwise features indicates association to a 3D point.

Linemod [11] dataset and competitive results on the Linemod [12] dataset. In summary, our main
contributions are:

• Pairwise feature extraction from direction vectors to better utilize local information
• Triplet regularization to account for the global geometry of the pairwise features
• State of the art results on Occlusion Linemod and competitive results on Linemod

2 Approach

We illustrate our approach in Figure 1. The correspondence estimator operates on an image and
predicts a segmentation mask. It also predicts direction vectors to the 2D keypoints for each pixel in
the mask. For each of the n 3D points pi, the pose estimator selects m random direction vectors uik
(1 ≤ i ≤ n, 1 ≤ k ≤ m) from the segmented region of the object. It applies a shared MLP Φs to
extract pairwise features, followed by aggregation using an aggregator Λ, and pose prediction from a
second MLP Φg .

2.1 Local Constraint

A direction vector uik is represented as a 4D input [x, y, dx, dy] where x, y is the pixel location, and
dx, dy is the predicted vector from that pixel. In the first step for the SSPE pose estimator, a shared
MLP is applied across all direction vectors to extract n×m local features. However, by operating
on every direction vector independently the local features do not have information about the 2D
keypoints. This is because a 2D keypoint is given by the intersection of a pair of direction vectors
pointing to that keypoint [9]. Hence, we propose to concatenate pairs of direction vectors [uik, uil]
and provide them as input to the shared MLP Φs. This gives us n× m

2 D dimensional features fih
(1 ≤ h ≤ m

2 ) termed as pairwise features.

fih = Φs([uik, uil]) 1 ≤ i ≤ n, 1 ≤ h ≤ m

2
, k = 2h− 1, l = 2h (1)

While Φs can theoretically learn to approximate the intersection of direction vectors to give pairwise
features with information about the 2D keypoints, we observe that adding global constraints can help
learn better features for improved performance.

2.2 Global Constraint

We account for the global geometry of the pairwise features by considering their association to the 3D
points. We want pairwise features associated with the same 3D point to be similar to each other, and
pairwise features associated with different 3D points to be dissimilar to each other. To encourage this
property we introduce a triplet regularization term. This also serves as a form of proxy supervision
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Table 1: Results on Occlusion Linemod (Part I) and Linemod (Part II) using the ADD0.1d metric1.
Part I: Occlusion Linemod Part II: Linemod

PVNet [9] DPVR [13] SSPE [10] SSPE-r2 SSPE-ours PVNet [9] DPVR [13] SSPE-r SSPE-ours
Ape 15.8 19.2 19.2 20.8 18.8 43.6 69.1 66.7 52.5
Can 63.3 69.8 65.1 78.4 79.3 95.5 98.5 95.8 99.2
Cat 16.7 21.1 18.9 18.2 17.5 79.3 83.1 84.1 88.5

Driller 65.7 71.6 69.0 73.8 76.4 96.4 99.0 98.4 98.8
Duck 25.2 34.3 25.3 33.1 34.4 52.6 63.5 60.4 68.7

Eggbox* 50.2 47.3 52.0 46.0 44.6 99.2 100.0 99.7 100.0
Glue* 49.6 39.7 51.4 49.2 53.2 95.7 98.0 90.4 98.5

Holepuncher 39.7 45.3 45.6 53.5 54.7 81.9 88.2 85.3 88.1
Average 40.8 43.5 43.3 46.6 47.4 80.5 87.4 85.1 86.8

1We do not compare against models that perform refinement on predicted pose [14][15].
2We reimplement SSPE as authors have not open sourced the training code

to the shared MLP Φs as different pairs of direction vectors associated with the same 3D point give
similar pairwise features. We mine triplets online and compute the triplet regularization term as:

Lt =
2

nm

n∑
i=1

m
2∑

h=1

max(Sih,jd − Sih,is + α, 0) 1 ≤ j ≤ n, i 6= j, 1 ≤ d, s ≤ m

2
(2)

where α is the margin and Swx,yz is the similarity between pairwise features fwx and fyz . We use
the cosine similarity function given as:

Swx,yz =
fTwxfyz

||fwx|| ||fyz||
1 ≤ w, y ≤ n, 1 ≤ x, z ≤ m

2
(3)

Similar to SSPE, we aggregate the pairwise features and apply a second MLP to compute the pose.
The pairwise features associated with each 3D point are aggregated using an aggregator Λ to give n
D dimensional group features gi. We choose Λ as the mean pooling aggregator.

gi = Λ({fi1, fi2...fim
2
}) 1 ≤ i ≤ n (4)

The group features are concatenated, and the nD dimensional vector is passed through a second MLP
Φg to predict the pose as a quaternion q̂ and translation t̂.

[q̂, t̂] = Φg([g1, g2...gn]) (5)

We recover the predicted rotation matrix R̂ from q̂ and compute the pose loss Lp as the 3D error:

Lp =
1

n

n∑
i=1

||(R̂pi + t̂)− (Rpi + t)|| (6)

where R and t are the ground truth rotation and translation.

The final loss L to optimize is a linear combination of the cross entropy segmentation loss Ls and
L1 vector regression loss Lk from the correspondence estimator [9], and the pose loss Lp and triplet
regularization term Lt from the pose estimator.

L = λsLs + λkLk + λpLp + λtLt (7)

3 Experiments

3.1 Training

We use n = 9 3D key points for each object selected using the farthest point sampling algorithm.
For the pose estimator, we randomly select m = 200 direction vectors for each of the 3D points.
The triplet margin α is set to 0.1. The loss coefficients λs and λk are set to 1, λp is set to 0.01 and
λt is set to 0.1. As per previous studies [9][10], we train separate models for each object. Training
images are provided at an input resolution of 640× 480 and augmented using scaling, translation,
rotation, occlusion [16], gaussian blurring and colour jittering. We use the Adam optimizer and set
the learning rate to 1e− 3 which is divided by 10 after processing 50%, 75%, and 90% of the data.
All models are trained with a batch size of 32 for 300 epochs.
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(a) (b)

Figure 2: t-SNE plot of the SSPE-r local
features (a) and the SSPE-ours pairwise
features (b) for the holepuncher object.
Each colour represents the features of
the 9 3D points.

Table 2: Ablation study on 4 non-symmetric and 1 sym-
metric object. Adding local constraints (SSPE-lc) im-
proves performance over SSPE-r and SSPE-rp. Adding
global constraints (SSPE-ours) further improves perfor-
mance. Results reported on Occlusion Linemod using
the ADD0.1d metric.

SSPE-m SSPE-r SSPE-rp SSPE-lc SSPE-ours
Can 71.9 78.4 79.5 77.6 79.3

Driller 62.4 73.8 75.5 76.1 76.4
Duck 28.8 33.1 32.3 32.3 34.4
Glue* 51.3 49.2 53.6 55.9 53.2

Holepuncher 44.7 53.5 51.1 52.7 54.7
Average 51.8 57.6 58.4 58.9 59.6

3.2 Evaluation

We benchmark our approach on the Linemod [12] and Occlusion Linemod [11] datasets for 8 object
classes. Similar to previous approaches [9][10], we augment the Linemod train data using synthetic
data. We generate 10000 images containing multiple objects using the cut and paste [17] technique,
and 8× 10000 images of single objects using the rendering technique in [9].

For evaluation, we use the ADD0.1d metric [12] to measure accuracy in 3D space. The ADD0.1d
metric measures the average distance between the 3D model points transformed using the predicted
pose and the ground truth pose. A predicted pose is assumed correct if the average distance is less
than 10% of the model diameter. We report the percentage of correctly predicted poses. We use the
symmetric version of the metric [5] for symmetric objects, which are denoted by the * superscript.

3.3 Results

We report results on the Occlusion Linemod dataset in Part I of Table 1. SSPE-ours achieves state of
the art results with a 9% improvement over the previous best method [13]. It has the highest scores
for 5 of the 8 objects.

We perform ablation in Table 2 to demonstrate the strength of our approach. Average performance
of SSPE with pairwise features (SSPE-lc) is better compared to standard SSPE with the aggregator
as max pooling (SSPE-r) and SSPE with the aggregator as mean pooling (SSPE-rp). Adding triplet
regularization (SSPE-ours) further improves performance. To support our hypothesis we do a t-SNE
visualisation of the SSPE local features and our pairwise features as shown in Figure 2. We note
much better clustering for our pairwise features. This suggests our approach successfully accounts
for the local and global constraints to improve end-to-end pose estimation.

We also observe that increased masking augmentation [16] can help increase performance. We
highlight its importance in Table 2 by initially setting the masking percentage to 10%− 30% (SSPE-
m), and then tripling it to 30% − 90% (SSPE-r). We note an average increase of 5.8 points in
ADD0.1d score. Hence, we use the increased masking in all our experiments.

We additionally show results on the Linemod dataset in Part II of Table 1. SSPE-ours achieves
competitive results and has the highest scores for 5 of the 8 objects. It also shows improvement over
SSPE-r.

4 Conclusion

We show that our approach (SSPE-ours) achieves state of the art results on the challenging Occlusion
Linemod dataset. We also perform ablation to demonstrate the strength of our approach. This suggests
the effectiveness of local and global constraints to improve end-to-end 6DoF object pose estimation.
In the future, we hope to explore geometric properties to further improve end-to-end 6DoF object
pose estimation.
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