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Abstract

2D Pose estimation is very important in localizing human joints such as elbows,
hip and foot, in images or videos. While 2D pose estimation estimates the location
of keypoints in 2D space relative to an image or video frame, 3D pose estimation
from an input image is difficult because the depth information that is lost as objects
and points in 3D space are mapped onto a 2D image plane, is hard to recover.
Hence, computing properties of the 3D world from visual data is hard. In this
work, we demonstrate single-person 3D pose estimation from indoor videos on
a custom dataset, with the long-term goal to enable motion analysis for injury
prevention in sports. We present three different frameworks for directly estimating
3D pose from observed video frames up to stage-wise training, two of which are
trained using end-to-end learning. Empirically, we observe average precision of
99% on 2D human pose and up to 90% for 3D pose estimation.

1 Introduction

Computer vision tasks like image classification, segmentation and object detection have largely been
addressed from a 2D perspective. The world, however, is 3D and it will be essential for models to
have a 3D understanding of their environments in order to successfully interpret, and navigate within
the real world. 3D human pose estimation remains one of the significant components that tries to
solve this problem but remains a core challenge in computer vision. This is due to a number of
factors to which the model needs to be invariant to, such as the background scene, clothing texture
and shape, lightening condition and more importantly, the depth information that is lost when we
project 3D properties onto a 2D plane.

A lot of work has been done in estimating 3D human pose in images and videos. These includes
high-performing convolutional based methods such as [1, 2]. Before deep convolutional neural net-
works came into the scene, traditional methods like [3, 4] and [5] have detected 2D pose using
pictorial structures and trained part-based models which can inform 3D pose estimation.

With the deep learning regime, popular architectures like OpenPose [6] followed by Maskrcnn [7]
have made siginificant breakthroughs in pose estimation and remains the most commonly used meth-
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ods in 2D estimation. OpenPose is a bottom-up approach that detect joints without needing a person
detector while Maskrcnn is an efficient top-down approach that uses a person detector to output 2D
joints.

In this paper, we follow this top-down approach using Maskrcnn [7]. Though this approach is a
high-performing method, it still suffers from a number of issues such as non-differentiability in
combination with other systems and an extra post-processing overhead for pose estimation. Both
issues makes it difficult to train end-to-end systems. We solve this problem by defining a soft-
argmax function which is similar to [8] in order to train end-to-end systems and extend the Maskrcnn
architecture to 3D pose estimation.

Our main contribution, therefore, is extending the work of He et al. [7] in Maskrcnn with integral
pose regression introduced by [8] for 2D and 3D pose estimation on a new dataset. Specifically,
we performed a comparative analysis on three different variants, and achieved a surpassing result
higher than our baseline models on the dataset. Hereinafter, these variants are also referred to
as frameworks. Our test set is a dataset of jumping motions that, with the right reconstruction
algorithm, is set up to enable injury prevention in sports.

2 Related Work

3D human pose estimation has been an heavily researched area in the field of computer vision for
quite a long time. In this section, we would describe some past and recent work in this area and
expound on their relation to our study.

2-step vs 1-step methods: Different approaches for estimating 3D pose can be broadly classified
into two major categories, which is i) predicting relative 3D pose by first detecting 2D keypoints or
ii) directly estimating 3D pose without an intermediate supervision.

The former approach (2-step) somewhat involves a top-down approach because it first proposes
regions of interest (ROI) using person detectors in the first step before detecting 2D keypoints in
each ROI. Many methods [7, 9–12] take advantage of powerful person detectors to estimate these
2D keypoints. For example, Cascaded Pyramid Network (CPN) adopts this top-down pipeline by
first generating a set of human bounding boxes based on a detector, followed by a Global Pyramid
Network that successfully recognize occluded or invincible keypoints. Maskrcnn follows the same
method in predicting 2D keypoints. It extends a proposal-based backbone by first proposing feature
maps, and then estimates keypoints using a parallel keypoint prediction branch.

At the end, these 2D keypoints with good detectors are lifted to estimate 3D pose. Martinez et al [13]
used a relatively simple deep feed forward network to lift both detected and groundtruth 2D joint
locations to 3D space. Moreno-Noguer [14] addressed the problem of 3D human pose estimation
as a 2D-to-3D distance matrix regression. Chen et al [15] reasoned through intermediate 2D pose
predictions to estimate 3D pose, by performing a simple nearest neighbor search given a 3D pose
library and a large number of generated 2D projections, whereas Zhou et al [2] simply predicts the
3D pose by regressing the depth from a set of given 2D keypoints.

On the other hand, the latter approach (1-step) estimates 3D pose directly from image features [16–
20]. Agarwal et al [16] predicted 3D pose using direct nonlinear regression given a set of shape
descriptor vectors extracted automatically from image silhouettes, whereas, Rogez et al [17] tackles
3D pose estimation from direct image features by recursively clustering and merging classes on a
decision tree. However, the best performing methods in most literature, use the 2-step approach to
learn from 2D keypoint trajectories.

Regression vs Heatmap-based methods: Several approaches have addressed pose estimation as
either a keypoint regression [21–24] or heatmap detection problem [25–30]. In the former, Toshev
et al. [21] used deep neural networks (DNN) to provide an holistic reasoning for pose regression.
The author use a cascade of DNN regressors to estimate joint locations for even joints that are
barely visible. Alternatively, Sun et al. [22] formulate the problem from a structural perspective. It
estimates 3D pose estimation using a structure-aware regression approach, which according to the
study uses the bone information instead of joints to estimate 3D pose. To the best of our knowledge,
all methods using regression-only approach without reasoning about the spatial structure have been
surpassed by heatmap based methods.
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In the latter, heatmap based methods have shown tremendous progress in pose detection [25–30].
For example, Chu et al. [25] use stacked hourglass networks to generate attention maps from fea-
tures at multiple resolutions. The attention maps where used to predict heatmaps for different body
locations. Bulat et al. [27] use a cascade of convolutional neural networks (CNN) to output part-
detection heatmaps. However, heatmap based method requires i) a post-processing step at inference
time ii) creating artificial groundtruth heatmaps from joint locations using for example, gaussian
distributions, and iii) inability to combine other architectures with it due to its non-differentiability.
A number of methods [8, 31, 32] solve this problem by introducing an integral regression. Our ap-
proach has similarities to these methods, however, unlike their models, our work explore multiple
frameworks for 3D pose estimation by extending the work of He et al. [7].

3 Experimental Setup

3.1 Dataset

The dataset was manually collected for an initial study describing the dynamic knee valgus of pro-
fessional alpine (sport) skiers during Drop Jump landings (DJ) and single-leg squats (SLS) [33].
Elite competitive skiers and Youth competitive alpine skiers were examined for their maximal knee
displacement (MKD) using a marker-based 3D motion analysis in evaluating the dynamic knee val-
gus.

In our own study, we estimate the relative 2D and 3D human pose that matches the spatial informa-
tion of the detected athlete in each video frame. Like the medial knee displacement [33] is estimated
using some keypoints, we also use the same keypoints to estimate 2D and 3D information. In this
study, these keypoints are considered to be the relevant joints.

Figure 1: Relevant Plug-in Gait keypoints or joint centers

Name Visual Description Plug-in Gait Description
RFEP Right hip joint center Right Femur Proximal
LFEP Left hip joint center Left Femur Proximal
RFEO Right knee joint center Right Femur Origin
LFEO Left knee joint center Left Femur Origin
RTIO Right ankle joint center Right Tibia Origin
LTIO Left ankle joint center Left Tibia Origin
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The dataset contains 3 sets of recordings, which are Set-A (with 42 elite skiers), Set-B1 (with 118
youth skiers in year 1), and Set-B2 (with 161 youth skiers in year 2). About 102 youth skiers from
year 1 (Set-B1) also appear in year 2 (Set-B2). Each athlete in the dataset has a recording of 1-2
videos. Some recordings that were empty or whose calibration file were without relevant keypoints
were dropped, making it a total of 587 recordings.

The dataset was splitted proportionally in a 70:15:15 ratio and we ensured that the athletes who
participated both in Set-B1 and Set-B2 are in the same sets. This is to avoid overlapping during
training, validation and testing. The average no of frames for each video is about 700 frames with
an average duration of 6s. In training, validation and testing, we sample 100 frames with a stride
of 3 for each video. All frameworks were trained using mini-batch of 3 samples, a learning rate of
0.001 and 15,000 iteration steps.

3.2 Pre-model Processing and Lens Distortion

Physical cameras use lenses, and images or videos taken with these cameras do not perfectly fol-
low the pinhole camera model. Therefore, we account for lens distortion in the following sections
by distorting groundtruth 2D keypoints with radial distortion parameters obtained by checkerboard
calibration.

3.2.1 Radial distortion model

XCP file format is used to store camera calibration information for vicon motion capture systems. In
our case, it contains the information required to perform lens distortion correction and to compute the
projection matrix P. To be clear, the lens distortion correction takes raw 2D points and transforms
them to 2D points which could be considered to have arisen via a pinhole camera. Most XCP
files will have for each “camera” only one “keyframe” sub node containing the actual calibration
information. In our system, we use the following attributes of a “camera” node:

• PIXEL_ASPECT_RATIO: the ratio of the physical dimensions of a pixel.

• SENSOR_SIZE: defined in pixels.

• SKEW

The important attributes of the “keyframe” node:

• ORIENTATION: 3D rotation using quaternion representation.

• POSITION: 3D translation.

• VICON_RADIAL or VICON_RADIAL2: containing the radial distortion information.

• IMAGE_ERROR: mean error in pixels which is the result of the calibration procedure.

• PRINCIPAL_POINT

• FOCAL_LENGTH

We use the following definition:

PIXEL_ASPECT_RATIO= ”a”
PRINCIPAL_POINT = ”xpp ypp”
VICON_RADIAL = ”w0 w1” , meaning rxdc ydcs = rxpp ypps , and w2 “ 0 or:
VICON_RADIAL2 = Vicon3Parameter ”xdc ydc w0 w1 w2”

Note rxdc ydcs is the distortion centre, the image point about which radial distortion occurs. This is
generally assumed to be same as the principal point. In Vicon_radial2 we select only w0 and w1 in
a similar correspondence to Vicon_radial.

The raw 2D point and corrected 2D point are, respectively, defined as

Pr “

„

xr
yr



and Pc “

„

xc
yc



(1)
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The correct radial distortion is calculated as

Pc “

„

xc
yc



“

„

s ¨ dx ` xpp
ps ¨ dy ` yppq{a



, (2)

where the radius is calculated as r “ ‖dp‖, the scale factor is calculated as s “ 1`w0r
2 `w1r

4 `

w2r
6, and

dp “

„

dx
dy



“

„

xr ´ xdc
apyr ´ ydcq



. (3)

3.2.2 Projection matrix

We use the following definition:

POSITION = ”t” (3-vector)
ORIENTATION = ”q” (4-vector)
FOCAL_LENGTH = ”f”
SKEW = ”k”

First we convert the quaternion q to a 3x3 rotation matrix R after which we compose the 3x4 matrix
Pa

Pa “ rR´Rts . (4)
Next, we compose the 3x3 intrinsic matrix K:

K “

«

f k xpp
0 f{a ypp
0 0 1

ff

. (5)

Finally, the projected (3x4) matrix P is calculated as:

Pa “ KPa (6)

We used this projection matrix to transform the 3D points into 2D points before distorting the 2D
points onto the distorted image. To distort the 2D points, we calculate our radial distortion parame-
ters by first centering the 2D points relative to the principal point/distortion centre.

dp “ pppx ´ xppq (7)

Then we calculate the radial distortion as a root-mean squared over the 2D coordinates before dis-
tortion. See Figure 3 with distorted keypoints.

Figure 2: Sample Image with no distortion Figure 3: Sample Image with distortion

3.3 Normalization

We applied standard normalization to the groundtruth 3D points by subtracting the mean and divid-
ing by the standard deviation. Seeing that, we do not estimate the world coordinates of the 3D pose,
we center the 3D pose around the mid hip-joint which is the average of the right hip joint center
(RFEP) and the left hip joint center (LFEP).
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4 Methods and Implementation details

Inspired by the work of He et al. [7], our method extends Maskrcnn [7] in each of the different
frameworks proposed. Therefore, we present only a brief overview of the Maskrcnn architecture
and elaborate more on our extensions to the architecture.

Maskrcnn: is notable for performing extremely well in instance detection tasks. It is a general
framework for object instance segmentation. Most of its architectural design follows the same as
Faster R-CNN [34], except with a new pixel-pixel alignment called ROI Align and an additional
mask branch for keypoint estimation. Our extensions are applied to this mask branch because it
extracts rich spatial information for each detected object.

Figure 4: Network architecture for Maskrcnn

4.1 Integral 2D heatmap + Integral 3D Location map (End-to-End training)

In this framework, we adopt the same design as Maskrcnn [7] and extend it by first, estimating
directly, the global 2D coordinates of an object from the spatial information coming from the mask
branch in a differentiable way and also, simultaneously generate the 3D location of the body pose
with additional location maps in a single step.

f : RN ˆ̂̂Hˆ̂̂W ˆ̂̂3 Ñ RN ˆ̂̂Kˆ̂̂2 & RN ˆ̂̂Kˆ̂̂3 (8)

To estimate joint 2D and 3D pose concurrently, we introduced additional heatmaps to Maskrcnn
called location maps similar to [35]. The proposed location maps Xi, Yj and Zk, captures the 3D
information of detected joints in 3D space while the 2D heatmaps captures information about the 2D
joints. To accommodate these new location maps, we modify the direct output head from Maskrcnn
to produce 24 heatmaps, 6 for the 2D output and 18 for the 3D output. Each heatmap is a 56 x 56
pixel spatial output. While most approaches use direct regression on heatmaps, the results of these
approaches are not entirely satisfactory. To also alleviate this problem, we defined an integral layer
[8] which takes the expectation (soft-argmax) over the locations rather than the maximum (hard-
argmax) . The xi, yj and zk values for the 3D coordinates are estimated by weighting the respective
location maps with the corresponding 2D heatmap Hm and taking a sum. While the expectation for
2D is also taken over its corresponding heatmap Hm. This integral step is fully differentiable and
allows us to train the framework end-to-end on groundtruth 2D and 3D coordinates without having
to create artificial groundtruth heatmaps.
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The discrete form of the integral step for 2D is defined as:

y2D
k “

H
ÿ

py“1

W
ÿ

px“1

p.H̃kppq P R
N ˆ̂̂Kˆ̂̂2 (9)

“ tx P R | 0 ă x ă 1u (10)

and for 3D is defined as:

y3D
k “

H
ÿ

py“1

W
ÿ

px“1

Lkppq.H̃kppq P R
N ˆ̂̂Kˆ̂̂3 (11)

where L is the location map and L predicts one 3D position per position p. Hk is the normalized
heatmap with non-negative values that sum to 1 and Ω is the domain of the normalized heatmap.

H̃kppq “
expHkppq

ş

qPΩ
expHkpqq

P RN ˆ̂̂Kˆ̂̂Sˆ̂̂S (12)

Figure 5: Integral 2D heatmap + Integral 3D Location map (End-to-End training)

We train this single architecture with a weighted loss L “ αL2D ` βL3D where L2D and L3D are
MSE (mean squared error) loss functions, α “ 0.7, and β “ 0.3. These two losses are normalized
such that they fall relatively within the same scale.

L2D{3D “
1

Nk

Nk
ÿ

i“1

pyi ´ ŷiq
2 (13)

where yi and ŷi are the groundtruth and predicted joints respectively.

4.2 Integral 2D heatmap + 3D MLP (Part training)

In this framework, we adopt the same design as Maskrcnn [7] and extend it with an integral step for
2D task only, and combined this modification with a 2nd multi-layer perceptron network [13] that is
trained separately.

The first architecture which is a modified Maskrcnn is expected to take in the image evidence and
output direct 2D coordinates following the integral step while the 2nd architecture, a multi-layer
perceptron network lifts these 2D coordinates as input to estimate 3D pose. Specifically, the 2nd
architecture uses a linear layer to map the input to a 1024 dimensional feature space and is followed
by two residual blocks that includes a linear layer, batch norm, rectified linear units (ReLU) and a
dropout. A final linear layer is used to regress the 3D pose from the feature space.
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In this combined system, both architectures are trained separately. We first optimize the modified
Maskrcnn architecture on 2D alone and store the optimal weights achieving top performance on 2D
task. The 2D output is in the global coordinates relative to the input image. With this coordinates,
the multi-layer perceptron network understands the global structure of the 2D points to estimate
the 3D pose. Next, we initialize and freeze the same architecture with the pre-trained weights and
perform 3D supervision on the multi-layer perceptron network. One of the inspiration for this
approach is to verify if the initialization point of these weights would be a good starting point for
the 3D task.

The Loss functions for 2D and 3D are also defined as:

L2D{3D “
1

Nk

Nk
ÿ

i“1

pyi ´ ŷiq
2 (14)

where yi and ŷi are the groundtruth and predicted joints respectively.

Figure 6: Integral 2D heatmap + 3D MLP (Part training)

4.3 Integral 2D heatmap + 3D MLP (End-to-End training)

In this framework, we combined the two architectures together, which is the same as Figure 6 but
trained in an end-to-end fashion. Instead of initializing a part of the network with weights learned
from 2D task, we jointly optimize 2D and 3D weights. In a sequential manner, the estimated 2D
coordinates from the first architecture is passed as input to the multi-layer perceptron network for
3D pose estimation.

We trained this combined architecture jointly with a weighted keypoint loss L “ αL2D ` βL3D

where L2D and L3D are MSE (mean squared error) loss functions, α “ 0.7, and β “ 0.7.
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Figure 7: Integral 2D heatmap + 3D MLP (End-to-End training)

5 Results

5.1 Metrics

We use the Microsoft CoCo mean average precision (mAP) for evaluating the intermediate 2D pose
and the MPI percentage of correctly positioned joints (PCK) for 3D evaluation. The PCK metric is
the percentage of joints with predicted locations that are no further than the groundtruth by a certain
threshold. Table 1 shows the results for different thresholds at 0.10m, 0.25m and 0.50m respectively.

5.2 Experimental results

In order to perform a comparative analysis on the three frameworks, we carry out a series of ablation
studies with different configurations. Table 1 shows the results for PCK and Table 2 shows the
results for 2D evaluation using mAP.

Framework PCK@0.10m PCK@0.25m PCK@0.50m
Integral 2D heatmap + Integral 3D Location map (End-to-End training) 89.8 99.5 100.0
Integral 2D heatmap + 3D MLP (Part training) 88.6 99.5 99.8
Integral 2D heatmap + 3D MLP (End-to-End training) 79.9 99.4 100.0

Table 1: Results for 3D evaluation using Percentage of Correct Keypoint (PCK) accuracy

Framework mAP
Integral 2D heatmap + Integral 3D Location map (End-to-End training) 99.0
Integral 2D heatmap + 3D MLP (Part training) 82.6
Integral 2D heatmap + 3D MLP (End-to-End training) 99.0

Table 2: Results for 2D evaluation using Mean Average Precision (mAP)

Our experiments show that our end-to-end Integral 3D Location map solution with (89.8% PCK)
improves on the baselines (88.6% and 79.9% PCK) respectively at all thresholds. By directly esti-
mating the 3D information we have better results, compared to multi-stage architectures where the
depth information is somewhat lost in between.

6 Conclusion

In this work, we presented three different frameworks for directly estimating 3D pose from observed
video frames on a custom dataset. In each of these frameworks, we explore differentiable 2D and
3D estimators and achieve the best performance on a single-step architecture. By directly estimating
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the 3D information we have better results, compared to multi-stage architectures where the depth
information is somewhat lost in between.

The multi-stage architecture however, is posed to be more domain invariant as it can make use of
both indoor and in the wild images to train its 2D estimators. These 2D estimators can become input
for 3D pose estimation thereby making it invariant to a particular domain. However, estimating
3D pose from 2D joints is insufficient on a particular dataset because 2D pose data contains less
information than images, thus inheriting more ambiguities.

We therefore conclude that the single-step Integral 3D location map approach benefits more from
rich information that is contained within the image and performs very well on a particular dataset.
By directly estimating the 3D information we have better results. Still, the attained accuracy is
unfortunately below the error margins needed for the motion analysis application to facilitate injury
prevention. At this stage, we recommend using multi-view approaches or solutions that incorporate
domain knowledge.

For further research, it would be interesting to incorporate mixture density networks with integral
pose regression, where we can generate more than a single hypothesis of the 3D pose on our dataset.
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