References
Here are a few representative papers of the focus areas for this workshop. This list is not intended to be exhaustive, and is only intended as a “reading list” for researchers exploring this exciting line of research. Suggestions and contributions to this list welcome!
- Garg R., B.G. V.K., Carneiro G., Reid I. Unsupervised CNN for Single View Depth Estimation: Geometry to the Rescue. ECCV 2016.
- Zhou T., Brown M., Snavely N., Lowe D. Unsupervised Learning of Depth and Ego-Motion from Video. CVPR 2017.
- Godard C., Aodha O., Brostow G. Unsupervised Monocular Depth Estimation with Left-Right Consistency. CVPR 2017.
- Godard C., Aodha O., Firman M., Brostow, G. Digging into Self-Supervised Monocular Depth Prediction. ICCV 2019.
- Guizilini V., Ambrus R., Pillai S., Raventos A., Gaidon A. PackNet-SfM: 3D Packing for Self-Supervised Monocular Depth Estimation. CVPR 2020.
- Luo X., Huang, J., Szeliski R., Matzen K., Kopf J. Consistent Video Depth Estimation. SIGGRAPH 2020.
- Zhou H., Ummenhofer B., Brox T. DeepTAM: Deep Tracking and Mapping. ECCV 2018.
- Jatavallabhula K., Iyer G., Paull L. gradSLAM: Dense SLAM meets automatic differentiation. ICRA 2020.
- Loper M., Black M. OpenDR: An Approximate Differentiable Renderer. ECCV 2014.
- Kato H., Ushiku Y., Tatsuya H. Neural 3D Mesh Renderer. CVPR 2018.
- Liu S., Li T., Chen W., Li H. Soft Rasterizer: A Differentiable Renderer for Image-based 3D Reasoning. ICCV 2019.
- Chen W., Gao J., Ling H., Smith E., Lehtinen J., Jacobson A., Fidler S. Learning to Predict 3D Objects with an Interpolation-based Differentiable Renderer. Neurips 2019.
- Li T., Aittala M., Fredo D., Lehtinen J. Differentiable Monte Carlo Ray Tracing through Edge Sampling. SIGGRAPH Asia 2018.
- Nimier-David M., Vicini D., Zeltner T., Jakob W. Mitsuba 2: A Retargetable Forward and Inverse Renderer. SIGGRAPH Asia 2019.
- Toussaint M., Allen K., Smith K., Tenenbaum J. Differentiable Physics and Stable Modes for Tool-Use and Manipulation Planning. RSS 2018.
- Belbute-Peres F., Smith K., Allen K., Tenenbaum J., Kolter Z. End-to-End Differentiable Physics for Learning and Control. Neurips 2018.
- Degrave J., Hermans M., Dambre J., Wyffels F. A Differentiable Physics Engine for Deep Learning in Robotics. Frontiers in Neurorobotics 2019.
- Hu Y., Liu J., Spielberg A., Tenenbaum J., Freeman W., Wu J., Rus D., and Matusik W. Chainqueen: A real-time differentiable physical simulator for soft robotics. ICRA 2019.
- Liang J., Lin M., and Koltun V. Differentiable cloth simulation for inverse problems. Neurips 2019.
- Hu Y., Anderson L., Li T., Sun Q., Carr N., Ragan-Kelley J., Durand F.. Difftaichi: Differentiable programming for physical simulation. ICLR 2020.
- Wu J., Lu E., Kohli P., Freeman W., Tenenbaum J.. Learning to see physics via visual de-animation. Neurips 2017.
- Guen V., Thome N. Disentangling Physical Dynamics from Unknown Factors for Unsupervised Video Prediction. CVPR 2020.
- Jatavallabhula K., Macklin M., Golemo F., Voleti V., Petrini L., Wiess M., Considine B., Parent-Levesque J., Xie K., Erleben K., Paull L., Shkurti F., Fidler S., Nowrouzezahrai D. gradSim: Differentiable physics and rendering engines for parameter estimation from video.
- Jaques M., Burke M., Hospedales T. Physics-as-inverse-graphics:Joint unsupervised learning of objects and physics from video. ICLR 2020.
- Jatavallabhula K., Smith E., Lafleche J., Tsang C., Rozantsev A., Chen W., Xiang T., Lebaredian R., Fidler S. Kaolin: A PyTorch Library for Accelerating 3D Deep Learning Research. arXiv 2019.
- Ravi N., Reizenstein J., Novotny D., Gordon T., Lo W., Johnson J., Gkioxari G. Pytorch3D (https://github.com/facebookresearch/pytorch3d). 2020 (accessed June 15 2020)
- Riba E., Mishkin D., Ponsa D., Rublee E., Bradski G. Kornia: an Open Source Differentiable Computer Vision Library for PyTorch. WACV 2020.
- Google Research. Tiny Differentiable Simulator (https://github.com/google-research/tiny-differentiable-simulator). 2020 (accessed June 15, 2020).