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Abstract— Teaching robots how to execute tasks through
demonstrations is appealing since it sidesteps the need to
explicitly specify a reward function. However, posing imitation
learning as a simple supervised learning problem suffers from
the well-known problem of distributional shift - the teacher
will only demonstrate the optimal trajectory and therefore the
learner is unable to recover if it deviates even slightly from
this trajectory since it has no training data for this case. This
problem has been overcome in the literature by some element
of interactivity in the learning process - usually be somehow
interleaving the execution of the learner and the teacher so
that the teacher can demonstrate to the learner also how to
recover from mistakes. In this paper, we consider the cases
where the robot has the potential to do harm, and therefore
safety must be imposed at every step in the learning process.
We show that uncertainty is an appropriate measure of safety
and that both the mixing of the policies and the data sampling
procedure benefit from considering the uncertainty of both the
learner and the teacher. Our method, uncertainty-aware policy
sampling and mixing (UPMS), is used to teach an agent to drive
down a lane with less safety violations and less queries to the
teacher than state-of-the-art methods.

I. INTRODUCTION
The use of machine learning algorithms in robotics is

becoming mainstream with applications in a rich and an
increasing number of domains, such as controlling self-
driving cars [1], aiding in diagnosis and healthcare treatments
[2], among many other areas. One issue which separates
many robotics scenarios from the standard machine learning
problem is safety: the physical agent should not cause harm
or injury during either the learning or the deployment phase.

In an Imitation Learning (IL) setting, an agent learns a
policy from demonstrations from a teacher. One issue with
this approach is that if the learner deviates slightly from
the teacher’s optimal trajectory at test time, then it has
no training data to help it recover and it quickly diverges.
Broadly speaking in machine learning, this problem is known
as distributional shift since the training and testing data are
sampled from different distributions.

One common approach to overcome the problem of distri-
butional shift is through Interactive Imitation Learning (IIL)
which allow the learner’s policy to influence the distribution
of the training samples [3]–[6]. These methods selectively
allow the learner to execute its is own predictions (as would
happen at test time) during training to gradually improve the
robustness of the final policy. Typically this is achieved by
sampling some time t uniformly from [0, T ] where T is the
horizon of the task, and then allowing the learning to execute
it’s policy for time [0, t] and then allow the expert to recover
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Fig. 1: In an imitation learning approach to driving, a mistake
made by a learned policy π̂ induces a distributional shift
from the teacher π∗ since the teacher only demonstrates the
optimal policy. As a result, the learner quickly diverges. Our
algorithm, UPMS, is capable of correcting for this problem
and guarantee expert-bounded safety throughout the learning
process.

from time [t + 1, T ]. However, these methods generally do
not explicitly consider the issue of safety for the learner in
the sense that they assume that the expert will always be
able to recover to the optimal trajectory from any state that
results from the learner execution until t (e.g., [5] Sec. 2.2
and [4] Sec. 2.2).

This assumption is likely to be incorrect in some scenar-
ios. For example, consider the stochasticity inherent in the
learner’s non-converged policy in earlier stages of training
for tasks with large horizons. A random sampling of t could
allow the untrained learner’s random policy to execute until
catastrophic failure before the expert is even given the chance
to recover. For example, an autonomous vehicle may have
already collided with an obstacle. In short, a strategy such
as this may disproportionately give execution time to either
the learner’s policy execution or the exploration mechanism
that disregards the global status of the learning procedure.

In this work, we propose an IIL approach that attempts
to address these safety concerns inherent in fielding and
deploying real physical robotic systems. This is achieved
through a reformulation of the IIL problem to make it
uncertainty aware - the policy mixing and time horizon
sampling strategies explicitly estimate and account for the
uncertainties in both the learner and the expert.

In summary we claim the following advantages of our
proposed method over the state of the art:

• It requires less queries to the teacher to learn a policy
• It guarantees expert-bounded safety during learning

We demonstrate these claims on the reproducible Ducki-
etown environment [7].

72

2021 18th Conference on Robots and Vision (CRV)

978-1-6654-1413-5/21/$31.00 ©2021 IEEE
DOI 10.1109/CRV52889.2021.00018

20
21

 1
8t

h 
C

on
fe

re
nc

e 
on

 R
ob

ot
s a

nd
 V

is
io

n 
(C

R
V

) |
 9

78
-1

-6
65

4-
14

13
-5

/2
0/

$3
1.

00
 ©

20
21

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

C
R

V
52

88
9.

20
21

.0
00

18

Authorized licensed use limited to: Université de Montréal. Downloaded on September 07,2022 at 17:58:00 UTC from IEEE Xplore.  Restrictions apply. 



II. BACKGROUND AND RELATED WORKS
The imitation learning problem can be framed as a Markov

Decision Process (MDP). A MDP is a tuple 〈S,A,P,R, γ〉
where S is a finite set of states s ∈ S , A is a finite set of
actions a ∈ A, P is the state transition probability (system
dynamics), R is the reward function, and γ ∈ [0, 1] is the
discount factor [8]. A policy π : S → p(A|S) is a stochastic
decision rule that specifies an agent’s behavior through the
horizon (duration) T of the task.

IL is the learning process between two agents, the learner
and the teacher, where we derive a learner control policy π̂
using a finite set of traces of the teacher policy π∗ execution
τ = {(s0, a

∗
0), . . . , (sN , a

∗
N )}. The goal is to minimize the

discrepancy between π̂ and the π∗ control values at each
state s ∈ S under a similarity measure e(π̂(s), π∗(s)).

IL have the advantage that it is not necessary to specify
a reward function R. IL algorithms can be sub-divided into
two families: Direct Policy Derivation and Indirect Policy
Derivation. Traditionally, Direct Policy Derivation (DPD)
methods have attempted to directly recover the expert’s
policy π∗ from τ . In contrast, Indirect Policy Derivation
(IPD) algorithms try to learn the reward function from τ
via Inverse Reinforcement Learning in order to later solve
the control problem with Reinforcement Learning [9].

We will present a DPD algorithm algorithm which is able
to guarantee safety up to the limit of the teacher and learn
policies with minimal teacher queries.

A. Imitation via Supervised Learning
Supervised Learning (SL) describes a procedure where

a dataset D = {(x0, y0), ..., (xN , yN )} containing pairs of
input (xi ∈ X ) and output (yi ∈ Y) vectors is used to find a
hypothesis (or classifier) θ : X 7→ Y over a hypothesis space
Θ.

Posing IL as SL is at a first glance straightforward. We
can simply impose the following equivalences: τ ≡ D, S ≡
X , A ≡ Y , and reduce the policy derivation to finding a
parameterization θ ∈ Θ that represents π ∈ Π. Thus, the
policy parameterization πθ can be obtained by finding the
hypothesis that minimizes the expected empirical error over
the traces:

π̂θ = argmin
θ∈Θ

Es∼τ [e(πθ(s), π
∗(s))] (1)

1) The Problem of Distributional Shift: Although quite
simple to implement, solving IL via SL violates the i.i.d
assumptions: (a) that each samples in a dataset are indepen-
dent and that (b) the training and test sets originate from
the same distribution. The application of SL to a sequential
control problem satisfies neither of these requirements. The
violation of (a) is a result of the sequential nature of the
decision making problem. The assumption (b) is violated
with high likelihood because at some time step during the
execution of the learned policy π̂, the predicted action will
deviate from the ones seen during training (for example due
to the stochastic nature of the control input or the fact that
π̂ 6= π∗). In this case the system could end up in a region
of the state space not represented by the training set. The
result is that when the learner makes a mistake as a result

of its own predictions, the test distribution is shifted. This
phenomenon is usually referred to in the statistical learning
literature as distributional shift or exposure bias and it is
common to structured prediction problems [10].

Consider specifically the autonomous driving scenario
depicted in Fig. 1. If the teacher is always executing a (near)
optimal policy, then, if the learner deviates from the optimal
path it will have no data in D to help guide it back to the
optimal path and will quickly diverge.

B. Interactive Imitation Learning

A common strategy to overcome the problem of distribu-
tional shift in IL is to incorporate some level of interactivity
between the learner and the teacher during training.

Four tools to enable this in different ways have become
prevalent and will combine to form the baseline algorithm
on which we will build: policy mixing, on-policy data
aggregation, explicit exploration and online learning.

1) Policy Mixing: In general form, the problem of policy
mixing (initially introduced in [3]) is defined as:

Definition 1. Policy Mixing Given two policies πa and πb

and mixing coefficients αai and αbi with αai + αbi = 1 then
the mixture policy at iteration i is denoted by:

mix πi ← αai π
a + αbiπ

b

where πi is equal to πa with probability αai and equal to πb

with probability αai .

Mixing π̂ with the π∗ during training induces an implicit
exploration step through erroneous predictions and exposes
the learner to a distribution different from the one obtained
by executing π∗ only.

2) On-Policy Data Aggregation: The interwoven execu-
tion of π̂ and π∗ during training makes it possible to build
an aggregate dataset D at each time step that is stochastically
composed of both policies’ predictions and can be used for
training. This technique is referred to as dataset aggregation
[5].

D ← D ∪Di , ∀ i (2)

3) Explicit Exploration: As learning progresses, π̂ will
converge towards π∗. Implicit exploration achieved through
policy mixing and dataset aggregation has improved robust-
ness somewhat, but can be further achieved by selectively
allowing the learner to explore [4], [11].

For instance, this is achieved in the AggreVaTe algorithm
by interleaving through policy mixing with an explicit explo-
ration policy πE [4]. A time instant t over the task’s horizon
is sampled, the learner’s policy is executed up to time t, the
exploration policy is executed at time t and then the teacher
executes. The hope is that this strategy will allow the system
to visit potentially unexplored parts of its state space and
learn from the expert’s corrective behaviour. One issue with
this approach is that it is impossible to provide guarantees on
the safety of the learner and exploratory policies, particularly
if the task horizon is large.
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Alg. 1 INTERACTIVE IMITATION LEARNING

Require: π∗: teacher’s policy, N : iterations, p1:N : decay
rate

1: D ← ∅, π1 ∈ Π
2: for i← 1...N do
3: mix πi ← piπ∗ + (1− pi)π̂i−1 . Sec. II-B.1
4: Di ← RANDOMSAMPLING(πi)
5: D ← D ∪Di . Sec. II-B.2
6: π̂i = argmin

π∈Π
Es∼dπi [e(π(s), π∗(s))] . Sec. II-B.4

7: return π̂N

Alg. 2 RANDOM SAMPLING

Require: π∗: teacher’s policy, πE : exploration policy, T :
planning horizon, M : number of trajectories (= 1 if
running on real robot)

1: procedure RANDOMSAMPLING(πi)
2: D ← ∅
3: for m← 1..M do
4: sample t ∼ U(1, T )
5: execute πi from 1..t− 1
6: explore πE(st) . Sec. II-B.3
7: execute π∗ from t+ 1...T
8: D ← D ∪ {(st+1, a

∗
t+1), . . . , (st, a

∗
T )}

9: return D

4) Batch Online Learning: Finally, the system is only
really interactive if the learner is able to update its model
based on data while it is being collected. The online learning
process can be expressed as:

π̂i = argmin
π∈Π

Es∼dπi [e(π(s), π∗(s))] (3)

where dπi is the set of datapoints generated by following
the policy mixture πi. The minimization procedure happens
when Di batches of training samples are aggregated to the
task dataset D . This batched online learning setting is
slightly different to the traditional online machine learning
where samples are provided sequentially. Although it is diffi-
cult to guarantee convergence to global optima with state-of-
the-art parameterization (e.g. Deep Neural Networks), DPD
algorithms with batched online learning still generally work
well in practice [12], [13].

Alg. 1 and 2 summarize the baseline algorithm including
policy mixing, dataset aggregation, explicit exploration and
online learning. Hereafter, this will be referred to as General
Interactive Imitation Learning (GIIL).

C. Safe Imitation Learning

Central to the problem of safety in decision-making is
the ergodicity assumption [14] that states that there are no
unrecoverable regions of the state space. This assumption is
impractical and dangerous in real physical systems [15]. A
formal method to ensure safety on MDPs involves identifying
reachability sets, or regions of the system state space which
are guaranteed to be safe [16], [17]. But it is unclear whether
reachability sets are sufficient for ensuring safety in an
MDP [15], [18], [19]. However, the IL setup provides a

different context since the expert demonstrates an optimally-
safe behaviour under the assumptions of a rational and non-
adversarial expert. For example, the Confident Execution
Framework (CEF) [20] requires the parameterization of
the learner’s policy to be a confidence-aware classifier to
ensure an adjustable autonomy level during training using
a threshold over the classifier confidence. CEF has been
extended to consider a multi-thresholded approach as a single
threshold was deemed insufficient for classifiers of higher
complexity [21]. Other derivations of CEF explore metrics
for establishing boundaries between the teacher and the
learner agent based on a single-threshold approach [22]–[24].
For instance, Maximum Mean Discrepancy-IL [22] computes
an upper bound over the discrepancy between the learner and
the teacher policy predictions to mix policies. SafeDAgger
[23] trains a safety binary classifier that helps to execute
the learner’s policy only when the classifier predicts a safe
scenario. Finally, DropoutDAgger [24] and [25] extends
SafeDAgger by estimating the uncertainty of the learner
using Monte Carlo Dropout [26]. One shortcoming is that
confidence-based learner-driven systems have the potential
to be exposed to overconfident predictions or under or over
estimation of safety and do not consistently offer the teacher
an opportunity to prevent these issues. To overcome this
issue, the method we propose here integrates the notion of
the expert’s uncertainty into the the IIL framework.

The Confidence-Based Autonomy Framework (CBAF)
[27] gives the most comprehensive attempt at safe IL as
it is the only method that allows expert’s interventions
during learning. However, CBAF’s approach requires the
computation of the model’s decision boundaries instead of
its uncertainty, an unpractical approach with current machine
learning models.

III. PROPOSED METHOD

The core element of recent literature in safe IIL centers
around being about to estimate confidence or its inverse,
uncertainty. For generality, we will assume that there is some
function Uπ : S → R≥0 that evaluates the uncertainty over
the actions that will be produced by a given policy π at state
s.

We assume that our IIL algorithm has access to a measure
of the uncertainty of the teacher, Uπ∗ , and a measure of the
learner’s uncertainty Uπ̂ . The IIL can be constrained to be
“safe” by limiting the amount of uncertainty in the policy that
is tolerated during learning. In general, this constraint could
act over the teacher’s uncertainty, the learner’s uncertainty (as
done in DropoutDAgger [24]), or, as we propose, a mixture
of both.

Another way to interpret our objective is that we are
looking to derive a policy mixing (Sec. III-A) and sampling
(Sec. III-B) strategy that allows our learning agent to safely
collect samples about all of the states that it might ever visit
at test time while always guaranteeing that the teacher can
return the system to the region of states that would be visited
if only ever following the teacher’s policy. In theoretical
terms, we are enforcing that the space of policies in the
batch online learning optimization (3) is constrained to only
the safe ones.
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A. Uncertainty-Aware Rational Policy Mixing

The policy mixing problem is defined in Problem 1. We
desire the following properties in our policy mixing:

1) Consistency or the ability to maintain probabilistic
consistent coefficients απp + απs = 1.

2) Rationality or the ability to asymptotically select the
best policy under uncertainty.

3) Neutrality or the ability to assign equal probabilities to
equally uncertain policies.

4) Impossibility or the ability to detect an impossible
decision under uncertainty.

Previous methods such as MMD-IL [22], SafeDAgger
[28] or DropoutDAgger [24] violate rationality, neutrality,
and impossibility since the uncertainty of only one of the
two possible policies is considered. Let’s assume that we
have one preferred policy πp (usually the learner) and one
secondary policy πs

In this case, the uncertainty-aware policy mixing between
teacher and learner is achieved via Uncertainty-Aware Pref-
erential Policy Mixing as defined below.

Definition 2. Uncertainty-Aware Preferential Policy Mixing
(UA-PPM) The choice of αp: f(Up), 0 ≥ αp ≥ 1 expresses
preference for policy πp through the following two rules:

lim
Up→0+

αpπp + (1− αp)πs = πp

lim
Up→∞

αpπp + (1− αp)πs = πs
(4)

regardless of the uncertainty of the secondary policy Us.

A Safe IIL system should not express in its design
preference for either Uπ̂ or Uπ∗ , instead it should establish
a cooperation boundary as it selects the policy that is more
confident to execute (e.g, CBAF [21]).

To express the neutrality in the selection, we can use
απp = f(Uπp), απs = f(Uπs) as mixing coefficients which
yields:

mix πRM ← απpπp + απsπs (5)

Our four desired properties can now be expressed in terms
of the behaviour of the mixture through the asymptotic limits
of Up and Us:

απp + απq = 1 (consistency)
lim

Up→0, Us→∞
πRM = πp (rationality)

lim
Up→∞, Us→0

πRM = πs (rationality)

lim
Up→0, Us→0

πRM =
1

2
πp +

1

2
πs (neutrality)

lim
Up→∞, Us→∞

πRM : undefined (impossibility)

(6)

Under these conditions, a rational mixture of policies πRM
guarantees that a more certain policy has a higher probability
of being selected (rationality). For those cases when no
policy can be rationally selected (impossibility) an undefined
scenario is created and left open to the system designer. We
also removed with this design any preference for either π∗

or π̂ uncertainties (neutrality).

Alg. 3 UNCERTAINTY-AWARE POLICY MIXING AND SAMPLING

Require: π∗, N , T , Uπ∗ , Uπ̂i−1 , f
1: D ← ∅, π1 ∈ Π
2: for i← 1...N do
3: απ∗ ← f(Uπ∗), απ̂i−1

← f(Uπ̂i−1
)

4: mix πRM ← απ∗π
∗ + απ̂i−1

π̂i−1

5: Di ← RATIONALSAMPLING(πRM )
6: D ← D ∪Di
7: π̂i = argmin

π∈Π
Es∼dπRM [e(π(s), π∗(s))]

8: return π̂N

Theorem 1. The hyperbolic tangent function:

απ = f(Uπ) , 1− tanh(Uπ) (7)

satisfies the four desired properties of consistency, rational-
ity, neutrality, and impossibility as defined in (6).

Proof. Please see [29].

We refer to this process as Uncertainty-Aware Rational
Policy Mixing (UA-RPM).

B. Uncertainty-Aware Rational Sampling
As shown in Alg. 2, standard methods for IIL generate

trajectories by: sampling a time within the task horizon: t ∼
U(1, T ), executing the learner policy for time t′ = 1..t− 1,
executing an exploration policy at time t, and then executing
the teacher policy for time t′ = t + 1..T . This strategy
is problematic from a safety standpoint since there is no
guarantee of safety during the first t steps of execution before
the teacher is allowed to take over.

We propose to mitigate this issue by using policy mixing in
the sampling process to have a much more fine-grained con-
trol of which policy executes at each time step of a rollout.
We use απRM = f(UπRM ), the uncertainty of the mixture
produced in (5) to rationally balance the execution of πRM
and the exploratory policy πE in a way such that πE is only
executed in low uncertainty contexts. We achieve this with
Uncertainty-Aware Preferential Policy Mixing (UA-PPM)
between πRM and πE expressing a preference for πRM .

This is the principled theoretical way to guarantee safety,
however, it assumes correct estimation of the learner uncer-
tainty Uπ̂i , which is actually quite difficult to estimate in
practice. In the case that it is underestimated, πE would be
selected more frequently, impeding the expert’s intervention
through the mixture. Thus, we re-formulate an exploration
strategy π′E through another UA-PPM that expresses prefer-
ence over π∗:

mix π′E ← απ∗π
∗ + (1− απ∗)πE (8)

Then, the Uncertainty-Aware Rational Sampling (UA-RS)
mechanism can be re-stated as:

mix πRS ← απRMπRM + (1− απRM )π′E (9)

Alg. 3 and 4 describe the full algorithm for Uncertainty-
Aware Policy Mixing and Sampling (UPMS) , a method
that by introducing minimal changes to the policy mixing
and sampling mechanisms improves expert-bounded safety
in GIIL.
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Alg. 4 UNCERTAINTY-AWARE RATIONAL SAMPLING

Require: π∗, πE , T , M (similar to Alg. 2)
1: procedure RATIONALSAMPLING(πi)
2: D ← ∅
3: for m← 1..M do
4: for t← 1..T do
5: απi ← f(Uπi), απ∗ ← f(Uπ∗)
6: mix πE′ ← απ∗π

∗ + (1− απ∗)πE
7: mix πRS ← απiπRM + (1− απRM )πE′
8: execute πRS
9: D ← D ∪ (st, a

∗
t )

10: return D

(a) Duckietown OpenAI Gym
Environments: UdeM 1 map.

(b) Agent in-lane position.

(c) Agent out-of-lane position. (d) Agent close to world
bounds.

Fig. 2: The Duckietown OpenAI Gym Environment [30]

IV. EXPERIMENTAL SETUP

This section presents the application of UPMS to the
problem of lane following. Using a single monocular camera
as input and a simulated environment, the experiments also
develop a comparative analysis of the safety, performance
and learning efficiency of UPMS against other state-of-the-
art IIL algorithms.

A. Duckietown OpenAI Gym Environments

The Duckietown OpenAI Gym Environment (DOGE) [30]
is an OpenAI Gym [31] platform for autonomous driving that
can be used either in simulation or in the real Duckietown
environment [7].

To ensure fairness across all the algorithms evaluated, it
is necessary to precisely define the protocol for gathering
experts demonstrations and interactively training and test
IIL algorithms for the lane following task. Across all the
execution, the horizon of this task was estimated to 512
simulation steps which are approximately equivalent to one
lap around the outer lane of this map. Each algorithm was
trained for ten episodes with pre-computed starting points
that were chosen at random and that represented a correct
position and orientation in the lane. The demonstrations were
collected from a human expert through the DOGE joystick
interface to simplify the training procedure. The samples

were obtained from driving around the outer lane of the
UdeM-1 map (Figure 2a) either in simulation or in the real
environment.

In these experiments and across each algorithm, the
learner’s policy was parametric with a convolutional neural
network model architecture that is based on the Residual
Networks architecture proposed in [32].

In the experiments configuration presented here, a fully in-
teractive learning procedure is implemented for all evaluated
algorithms with the following rules:

1) The expert policy π∗ has control over the first training
episode.

2) Starting the second episode, the expert intervenes
(Uπ∗ = 0) only as per the requirement of the algo-
rithms.

It is important to state that the requirements of the algo-
rithms in (2) refer to either querying requirements or input
of teacher’s uncertainty given to each algorithm accordingly.

Furthermore, to reduce stochasticity in the environment
and improve reproducibility of the experiments, all the ran-
dom generators were initialized using a pre-computed seed
that was kept constant across algorithms in the same iteration
(e.g., seed = 1234 for all algorithms in iteration 1).

The learning samples were fed to the learner’s policy
parameterization through online batch learning [4]. This
method helps alleviate the noise in the gradient used to
optimize this model. Regarding the optimization method
implemented, it was empirically determined that AdaGrad
[33] with an initial learning rate of 0.001 obtained the best
results during online training.

V. RESULTS AND DISCUSSION
In our evaluation we compare our algorithm against

several baselines: Supervised (only teacher), DAgger [5],
AggreVaTe [4], and DropoutDAgger [24]. The uncertainty
threshold (predictive variance) σ2 was empirically computed
for the task and set to σ2 = 0.1. This selection also impacted
the mixture coefficients in UPMS. To ensure fairness and
to make the threshold point close to the saturation point of
1− tanh(σ2) ≈ 3 the uncertainty values were multiplied by
30 units.

Also, to isolate the impact of the changes introduced by
UPMS, the evaluation procedure included three variations
to the original definition of UPMS: UPMS-NE performs no
explicit exploration, UPMS-SL tries to address a possible
data starvation problem in UPMS by aggregating π̂(s) pre-
dictions to the training dataset, and UPMS-NE-SL accounted
for a combination of the strategies explained above.

Table I presents the qualitative results obtained during the
training phase of each algorithm on the lane following task
in DOGE. Penalties are given by the environment when the
learning system invades the opposite lane or moves contrary
to the lane direction. When the robot completely leaves the
road, this is deemed a catastrophic failure and is listed as
a safety violation. That penalties and out of bounds events
constitute the primary measure of safety for an IIL algorithm
in our evaluation. The analysis of the results presented in
Table I demonstrates that uncertainty-aware IIL algorithms
(DropoutDAgger and UPMS variants) offer better safety
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Fig. 3: (a) Number of out of bounds events over training episodes, (b) Penalty values obtained by each algorithm over
training episodes, (c) Number of teacher interventions over training episodes. (Note: legend in (a) applies to (b) and (c))

Penalties Safety Inter-
Algorithms Received Violations ventions

Supervised (baseline) 9.06± 0.36 2 5120
DAgger (α1 = 0.99) [5] 32.88± 4.47 1 2924
AggreVaTe (α1 = 0.99) [4] 252.63± 43.58 13 4440
DropoutDAgger [24] (σ2 > 0.1) 17.87± 0.51 5 2826
UPMS (α = 1− tanh(30 · σ2)) 10.18± 0.78 1 994
UPMS-NE (no exploration) 9.18± 0.54 1 931
UPMS-SL (self-learning) 12.74± 0.62 0 1175
UPMS-NE-SL 3.53± 0.34 0 1100

TABLE I: Training penalties, safety violations, and number
of queries to the expert (interventions) originated from the
training phase of each IIL algorithm in DOGE.

guarantees than traditional IIL learning systems while requir-
ing fewer interventions/queries to the expert’s policy, a result
that reaffirms the findings in literature [24]. Furthermore,
UPMS and its variants significantly exceed DropoutDAgger
(and baselines) performance across all the evaluation parame-
ters over the full training steps (5120). As discussed before,
one of the main drawbacks of DropoutDAgger - and any
learner-preferred policy mixing strategy in general - is that
it does not entirely address the safety issues in the learning
system. Failures in the uncertainty estimation function or
misspecification of the uncertainty threshold may provoke
the overconfident execution of the learner’s policy. This
phenomenon is reflected by the penalties and out of bounds
quantities for this method entry in Table I. In aggregate,
UPMS is able to achieve safer training (both in terms of
safety violations and penalties) with few interventions from
the teacher.

It is also essential to corroborate the consistency of these
results from the perspective of how the learning system
evolves over training episodes. Fig. 3c shows per-episode
values of the number of queries/interventions for all algo-
rithms over the 10 episodes they were executed.

An unintended effect of incorporating uncertainty estima-
tion in the IIL framework is the reduction of the number of
queries (or interventions) of the expert policy. This effect was
first observed in [23] and posteriorly corroborated in [24]. As
displayed in Figure 3c, the number of queries/interventions
in DropoutDAgger –which surpasses SafeDAgger [23] in
this regard– decreases linearly with the number of episodes.

The uncertainty-based shared control strategy proposed here
(UPMS and variants) has significantly improved this be-
haviour. All of the UPMS variants have dramatically faster
convergence in terms of the number of required interven-
tions, demonstrating that learning is happening much more
efficiently. Also important to note, is that, due to our rational
sampling strategy, the teacher is permitted to intervene when-
ever deemed necessary. As a result, all of the interventions
are at times when the learner needs aid. This is contrast to the
uniform random sampling startegy under which the teacher
might want to intervene but not be allowed because it is prior
to the sampled time t, or might be forced to intervene even
though it isn’t necessary.

Figures 3a, 3b show the number of out of bounds events
and the values of the penalties received in each training
episode respectively. We note a performance drop in DAgger
and AggreVaTe towards the end of training empirically
solidifies the analysis that hypothesis these algorithms suffer
from safety issues. This situation arises when the mixture
of policies becomes preferential towards the learner’s non-
converged policy, making the learning system harder to con-
trol by the teachers’s input. Uncertainty-aware IIL algorithms
are less affected by this phenomenon. DropoutDAgger still
presents some issues in this regard that may be directly
related to the selection of the uncertainty threshold, issues
in the uncertainty estimation method, or that the shared
control strategy is deficient. UPMS and its variants perform
consistently in this aspect as the values for penalties remain
approximately constant and low through training and very
few out of bounds events occur.

For a quantitative demonstration of the system in action
on the real robot please refer to the media attachment.

VI. CONCLUSION
We have presented a method for safe interactive imitation

learning. It enforces safety by leveraging uncertainty in both
the policy mixing and the sampling stages. Our results show
that the agent is able to efficiently learn a policy with
few required teacher interventions while satisfying safety
constraints throughout the learning process.
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