
Deep Koopman Representation for Control over Images (DKRCI)

Philippe Laferrière∗†, Samuel Laferrière‡, Steven Dahdah§, James Richard Forbes§¶, and Liam Paull∗†
∗ Department of Computer Science and Operations Research, Université de Montréal, Montreal, Quebec,

philippe.laferriere.1@umontreal.ca
† Mila, Montreal, Quebec

‡ Orangead Media, Montreal, Quebec
§ Department of Mechanical Engineering, McGill University, Montreal, Quebec

¶ GERAD, HEC Montreal, Montreal, Quebec

Abstract—The Koopman operator provides a means to rep-
resent nonlinear systems as infinite dimensional linear systems
in a lifted state space. This enables the application of linear
control techniques to nonlinear systems. However, the choice of
a finite number of lifting functions, or Koopman observables,
is still an unresolved problem. Deep learning techniques have
recently been used to jointly learn these lifting function along
with the Koopman operator. However, these methods require
knowledge of the system’s state space. In this paper, we
present a method to learn a Koopman representation directly
from images and control inputs. We then demonstrate our
deep learning architecture on a cart-pole system with external
inputs.

Keywords-Koopman operator theory, deep learning, dynam-
ical systems

I. INTRODUCTION

A discrete-time initial value problem (IVP) consists of a
dynamical system

xk+1 = f(xk), (1)

along with an initial value x0. Solving an IVP yields a tra-
jectory (x0, x1, . . . , xn), where n may be as large as desired.
Certain problems add control inputs to this formulation,
which must be be individually set at each time step. Then,
the dynamical system formulation becomes

xk+1 = f(xk, uk), (2)

where uk is the control input.
Three distinct problems arise from such a formulation [1].

The first is the system identification problem, in which we
wish to identify f from a dataset of (xk, uk, xk+1) tuples.
The second is the simulation or prediction problem, in which
we wish to find xk+1 given f(·, ·) and (xk, uk) pairs. This
problem is particularly relevant when we have a good model
of a system and want to predict its behavior under certain
circumstances. The third problem is the control problem,
wherein we want to find a control law or policy

uk = h(xk) (3)

that will drive the system to a desired state while starting
from some initial state x0.

In this paper, we focus on the system identification and
simulation problems. Traditionally, when studying a system
of interest, expert knowledge is needed to formulate and
derive a parametric differential or difference equation that
can reasonably model the observed data. The system iden-
tification problem then amounts to identifying, or learning,
the parameters of these equations [2]. Nowadays, due to
advances surrounding deep learning [3], it is common to
model f using a neural network [4], [5]. The system
identification problem then translates to training that neural
network using data gathered from running the dynamical
system from various initial conditions. This is sometimes
referred to as model-based learning, as opposed to the
model-free setting [6]. The control problem, on the other
hand, is more challenging. While control theory for linear
dynamical systems is generally well understood, controlling
arbitrary nonlinear dynamical systems is still challenging.

The Koopman operator [7], [8] is an alternative approach
to representing nonlinear dynamics, wherein nonlinear dy-
namics are lifted to an infinite dimensional space where
they appear linear. Thus, the Koopman operator trades finite-
dimensional nonlinear dynamics for infinite dimensional
linear dynamics. The exact representation of a nonlinear
system as a linear system is of great consequence for control
design, as linear control techniques may be used in the
lifted space, which correspond to nonlinear controllers in
the original state space. Using the Koopman operator, linear
control techniques like model predictive control have been
successfully applied to to nonlinear systems [9].

For practical use, a finite dimensional approximation of
the Koopman operator must be constructed. To do so, a
finite selection of lifting functions or observables must be
selected. For that given choice of observables, an approx-
imate Koopman operator is then found using regression
techniques. The choice of Koopman observables is an open
research problem. They are often hand-engineered based on
known dynamics [10], [11], or selected to be standard basis
functions like polynomials [12].

Deep learning techniques have proven effective in jointly
selecting Koopman observables and approximating the
Koopman operator from data [13], [10], [14], particularly

158

2021 18th Conference on Robots and Vision (CRV)

978-1-6654-1413-5/21/$31.00 ©2021 IEEE
DOI 10.1109/CRV52889.2021.00029

20
21

 1
8t

h
C

on
fe

re
nc

e
on

 R
ob

ot
s a

nd
 V

is
io

n
(C

R
V

) |
 9

78
-1

-6
65

4-
14

13
-5

/2
0/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

C
R

V
52

88
9.

20
21

.0
00

29

Authorized licensed use limited to: Université de Montréal. Downloaded on September 07,2022 at 18:01:08 UTC from IEEE Xplore. Restrictions apply.

for systems where the state space is readily accessible.
Lusch et al. [13] use a deep neural network to represent
their Koopman observables, and jointly optimize for the
neural network parameters and Koopman operator. Abraham
and Murphey [10] go a step further by considering control
inputs and synthesizing a linear controller using the learned
Koopman operator. They then employ an active learning loop
to stabilize a cart-pole system and control a two-link robot
arm. Han et al. [14] present a similar learning approach
with a modified loss function that promotes controllability
in the learned Koopman operator. They then demonstrate
their approach, called Deep Koopman Representation for
Control (DKRC), using inverted pendulum and lunar lander
simulations from OpenAI Gym [15].

The above approaches require access to the state space
of each system, which is not always available in robotics
problems. The contribution of our work is to extend DKRC
to the image domain. We first use an autoencoder to translate
images into a lower dimensional latent space. We then
treat that latent space as the state space and use a DKRC-
based approach to jointly learn the Koopman operator and
observables. We call this approach DKRCI: Deep Koopman
Representation for Control over Images. While this paper
was in review, the authors noticed that Xiao et al. [16]
proposed a similar approach to ours, which they call CKNet.
However, the major difference between the two architectures
is that we divide the architecture in two stages to faciliate
training (see section III for details), whereas they map from
images directly to observation space.

II. BACKGROUND

Consider a discrete-time nonlinear ODE

xk+1 = f(xk) (4)

with initial condition x0, where xk ∈ Rnx . The Koopman
observables g : Rnx → R form an infinite dimensional
vector space F. The evaluation of an observable at a point is
called an observation. The discrete-time Koopman operator
K : F→ F advances observables in time. It is defined as

K(g) = g ◦ f (5)

for any g ∈ F. Evaluated at xk, that is

K(g)(xk) = (g ◦ f)(xk) = g(xk+1). (6)

The Koopman operator returns the observable that, when
evaluated at the current state, maps to the observations of the
next time step. The Koopman operator advances functions
through time as opposed to advancing states.

When a vector space structure is defined on F, the
Koopman operator is linear, meaning

(K(λ1g1 + λ2g2))(x) = (λ1g1 + λ2g2)(f(x)) (7)
= λ1g1(f(x)) + λ2g2(f(x)) (8)
= λ1(Kg1)(x) + λ2(Kg2)(x). (9)

As a result, the attractive properties of superposition and
scaling hold.

Therein lies the tradeoff made by Koopman operator
theory: trade a finite dimensional but nonlinear dynamical
system for an equivalent linear but infinite dimensional
dynamical system. The goal of applied Koopman operator
theory is to find a good approximation of the Koopman
operator on some space of functions.

In practice, we must limit ourselves to a finite-dimensional
space of functions F ⊂ F, so K, the approximation of K on
F , can be represented as a matrix. We define a dictionary of
observables Dx = [φ1 · · · φn]> which spans F . Then, for
all g ∈ F , g =

∑n
i=1 wiφi, wi ∈ R. Put another way, we can

represent every function g in F as a linear combination of
the elements of Dx, and write g = [w1 · · · wn]>. Note that
Dx is not necessarily a basis for F ; some vectors may be
linear combinations of others. For example, Dx could be all
polynomials of the state vector up to degree p. However, the
choice of Dx is crucial and makes or breaks the performance
of the algorithm. From a theoretical point of view, a good
choice of dictionary is one in which the resulting F is an
invariant subspace under K, or as much as possible. From
a practical point of view, as the dimension of Dx increases,
we have found that an increasing amount of numerical issues
arise when learning K.

Using this representation for the functions of F , K is an
n× n matrix, and

g(xk+1) = (Kg)(xk) + ek

where ek ∈ F is the error that arises from using K instead
of K. Another interpretation is that K = P ◦K, where P is
an operator which projects vectors g ∈ F on F .

Not only can the Koopman framework be used for pre-
diction, it can also be used in control. By using a linear
representation of the dynamical system, as opposed to a non-
linear one, linear control tools such as the linear-quadratic
regulator (LQR) [10], [14] or model predictive control [9],
[17] can be used.

The framework presented so far can be adapted to
include an exogenous inputs uk. Consider a dynamical
system xk+1 = f(xk, uk), and let D = [Dx, Du] =
[φ1 . . . φnx

, ψ1, . . . , ψnu
]>, where φi(x) : Rnx → R and

ψi(x, u) : Rnx × Rnu → R. We separate the dictionary
in such a way because we do not want to predict the
control variables; these are chosen by a controller outside
the system. Thus, K can be written as [10]

K =

[
Kx Ku
· ·

]
, (10)

Kx ∈ Rnx×nx and Ku ∈ Rnx×nu . The (·) in (10) refers
to the terms that evolve the control inputs, which we
don’t estimate. The dynamical system over the observables
becomes

159

Authorized licensed use limited to: Université de Montréal. Downloaded on September 07,2022 at 18:01:08 UTC from IEEE Xplore. Restrictions apply.

Dx(xk+1) = KxDx(xk) +KuDu(xk, uk). (11)

III. LEARNING WITH KOOPMAN

A simple and efficient way to learn the Koopman operator
is by a simple least-squares optimization problem [18]. Thus,
given a dataset (xi, ui, yi)

m
i=1, where yi = f(xi, ui),

K = argmin
K

1

2

m∑
i=1

∥∥Dx(yi)−K>
x Dx(xi)−K>

u Du(xi, ui)
∥∥2
2

+λ‖K‖2r
(12)

where Dx(x) = [φ1(x) . . . φn(x)] and the regularizer norm
is r = 1 or r = 2. Notice that we are doing the regression in
the space of observations as opposed to the space of observ-
ables, while the Koopman operator acts on observables as
opposed to observations. It can be shown that the operator
K that acts on the space of observations is the transpose of
K. Hence we write K> as opposed to K.

One must be careful when choosing Du. When doing
control, observables that predict well may not be suited for
control. We make this more explicit with an example. We
present a continuous dynamical system that can naturally be
translated into a discrete-time dynamical system.

Let our state space be x = [x y θ]> with control u =
[v ω]>. The transition function f(x,u) isẋẏ

θ̇

 = f(x,u) =

v cos θv sin θ

ω

 . (13)

Choose

Dx(x) =


x

y

sin θ

cos θ

 , Du(x,u) =


v cos θ

v sin θ

ω cos θ

ω sin θ

 . (14)

Given this choice of observables, there exists a finite-
dimensional Koopman operator that gives perfect predic-
tions, that being

d

dt
Dx(x) = KxDx(x) +KuDu(x,u) (15)

= 0Dx(x) +


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

Du(x,u). (16)

It can be shown that these equations are exact. Now, for
the controller, we will use LQR with Q = I and R = I.

Therefore, our control Du(x,u) has the form Du(x,u) =
−FctrlDx(x). It turns out that

Fctrl =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1

 (17)

such that

Du(x,u) =


v cos θ

v sin θ

ω cos θ

ω sin θ

 =


−x
−y
sin θ

− cos θ

 . (18)

There are multiple ways to recover v and ω. For example,

v =
−x
cos θ

, (19)

v =
−y
sin θ

. (20)

What’s concerning is the fact that using (19) or (20) results
in a different v. In particular, Du(x,u) lies on a manifold,
whereas −FctrlDx(x) lies in a vector space. The various
ways of recovering v and ω can be thought of as choosing
different projections back onto the manifold. This is a
potential shortcoming of applying Koopman theory when
inputs are present.

Returning to this specific example, consider the following
ω and v control inputs derived directly from (18):

ω =
√
ω2 cos2 θ + ω2 sin2 θ (21)

=

√
sin2 θ + (− cos θ)2 (22)

= 1, (23)

and

v =
√
v2 cos2 θ + v2 cos2 θ (24)

=
√
x2 + y2. (25)

This is clearly a bad controller; ω = 1 corresponds to a
constant anti-clockwise input, while the tangential velocity
is larger the farther the system is from the origin. It can be
verified that other vs and ωs derived from (18) give equally
bad controllers. This motivated us to pick D(x,u) = u so
that we avoid any ambiguities in recovering u.

A. DKRCI

In virtually every robotics application, we do not have
access to the underlying state space. This calls for a method
which acts on sensor data directly. Next we present our
method, DKRCI, which extends DKRC to the image do-
main.

160

Authorized licensed use limited to: Université de Montréal. Downloaded on September 07,2022 at 18:01:08 UTC from IEEE Xplore. Restrictions apply.

(Z,W) Z

Y Y

K

φf φr

Figure 1: DKRC architecture. Y is the state space, Z is
the observation space, and W is the action space. K is the
Koopman operator.

Algorithm 1: DKRCI Training Process
Result: Trained autoencoder and Koopman network
// Train autoencoder
for number of training iterations do

Sample minibatch of m images {xk}mk=1 from
the autoencoder dataset ;

Update autoencoder parameters θa using Adam
optimizer;

∇θa

m∑
i=1

‖xi − ϕr ◦ ϕf (xi)‖1

end
// Train Koopman network
for number of training iterations do

Sample minibatch of n data points {(xk, uk)}nk=1

from the Koopman network dataset ;
Update Koopman network parameters θk using
Adam optimizer;

∇θa

n∑
k=1

γt
∥∥xk − ϕr ◦ φr ◦Kt(φf ◦ ϕf (x1), u1:t)

∥∥
end

1) Architecture Overview: The original DKRC architec-
ture is shown in Figure 1 and our proposed architecture is
shown in Figure 2. We define four spaces: pixel space X,
latent space Y, observation space Z, and action space W. It
is designed as a two-tiered system: an autoencoder (ϕf , ϕr)
which relates the pixel space X and the latent space Y, and
a Koopman network (φf , K, φr) which relates the latent
space Y and the observation space Z. This design allows
us to decouple the training of the system into two separate
phases, which greatly simplifies the process. Additionally,
note that K takes an input variable w ∈ W directly, as
opposed to sending ω through φf ◦ ϕf . The reason for this
is explained in Section II.

2) Datasets: In order to train DKRCI, we need to collect
two different datasets. The first dataset, the autoencoder

dataset, is a collection of images collected simply by running
the environment with random inputs. The second dataset,
the Koopman network dataset, is a collection of episodes
{(xk, uk)}nk=1 of length n, where xk is the image at time k,
and uk is the random control applied at time k. In order for
the model to generalize well, care must be taken to gather
data from as large a subset of pixel space as possible.

3) Training process: The training process is depicted in
Algorithm 1. The first training phase consists of training
the autoencoder, which consists of the encoder ϕf and the
decoder ϕr. These are trained jointly over a dataset of
images using the Adam optimizer [19].

The second phase is more involved. During this training
phase, the autoencoder is held constant, and the three parts
of the Koopman network are jointly trained again with the
Adam optimizer: the observables network φf , the Koopman
operator K, and the recover network φr. The challenge
is to ensure that what the K network learns is actually
the Koopman operator of the underlying dynamical system,
which we enforce with a soft constraint. We train this second
phase using multi-step prediction, where K is applied n
times to the observation given by the observables network,
and each of these predictions has to be recovered by the
recover network. More specifically, the loss function is given
by

L =
n∑
k=1

γk
∥∥xk − ϕr ◦ φr ◦Kk(φf ◦ ϕf (x1), u1:t)

∥∥ (26)

where γ ∈ [0, 1] is the discount factor, xk are the images,
and uk are the input. This loss function highlights a crucial
difference between deep Koopman approaches and other
deep approaches to representing dynamics with deep neural
networks [5]: moving one extra step into the future only
requires one extra matrix multiplication of K. Other ap-
proaches typically require a full neural network feedforward
pass in order to move one extra step into the future.

IV. RESULTS

Similar to DKRC [14], we use a modified version of
the cart-pole environment of OpenAI Gym [15] to test our
algorithm. The default cart-pole environment only accepts
two possible discrete actions: 0 to nudge the cart-pole left,
and 1 to nudge it right. However, the Koopman operator is
formulated for differential equations with states x ∈ Rnx .
We used a modified cart-pole environment that accepts all
values between −1 and 1 as input, where −1 corresponds
to maximum force applied to the left, while 1 corresponds
to maximum force to the right. We sampled datasets of
trajectories from this environment, and used them to train
our neural networks in two distinct phases as described in
Section III.

In order to find the best neural network architecture for
the autoencoder and the Koopman network, we varied the
number of layers (between 2 and 3), the activation functions

161

Authorized licensed use limited to: Université de Montréal. Downloaded on September 07,2022 at 18:01:08 UTC from IEEE Xplore. Restrictions apply.

(Z,W) Z

Y Y

X X

K

φf φr

ϕf ϕr

Figure 2: DKRCI architecture. An image at time k is mapped
to latent space with the encoder ϕf , which is mapped
into observation space with neural network φf . The action
w ∈ W is appended to the observation and mapped back
into observation space using the Koopman operator K. This
represents the observation at time k+1. This observation is
mapped back into latent space using φr, and back into pixel
space using ϕr, which represents the image at time k + 1.

G
ro

u
n

d
tr

u
th

P
re

d
ic

ti
on

Figure 3: Comparison between the real image and the au-
toencoder’s prediction. The first row shows the real images;
the second shows the autoencoder’s prediction.

(ReLU, Leaky ReLU, or tanh), the use or not of batch
normalization [20] and the number of data points used in
training (1× 103, 1× 104, or 5× 104).

The final architecture is depicted in Figure 2. In our
implementation, X = [0, 1]210×210, Y = R10, Z = R31,
and W = [−1, 1]. An autoencoder, composed of encoder
ϕf and decoder ϕr, is trained to map to and from image
and latent spaces. A neural network φf maps from latent
space to observation. Similarly, a second neural network φr
maps from observation space back into latent space. Finally,
the Koopman operator is a linear operator that maps from
observation space (cross action space) to observation space.

A. Autoencoder architecture

The images that go into the autoencoder are resized to
210 × 210 pixels using bilinear interpolation, and pixel
values are mapped to the [0, 1] range. The autoencoder can
be thought of as two separate networks: the encoder ϕf , and
the decoder ϕr.

The encoder ϕf is a convolutional neural network con-
sisting of two convolutional layers, each feeding into a
batch norm layer [20], followed by a ReLU nonlinearity
and 10×10 max pooling. The first convolutional layer is an
11×11 kernel and maps to 64 output channels. The second
convolutional layer also uses an 11 × 11 kernel, mapping
to 256 output channels. Finally, the last layer is a linear
function mapping to 10 output channels (the latent space
Y), followed by a leaky ReLU layer.

The decoder ϕr is comprised of two deconvolutional
layers, each feeding into a batchnorm layer. First, the 10-
dimensional input is sent through a linear layer that maps to
256 dimensions, followed by a leaky ReLU. Then, 10× 10
max unpooling is applied, followed by a ReLU nonlinearity,
followed by a batch norm layer, and finally through the first
deconvolutional layer (11×11 kernel, mapping 256 channels
to 64). The output is again fed into a 10×10 max unpooling
layer, into a ReLU nonlinearity, into a batchnorm layer, and
finally into a deconvolutional layer (11×11 kernel, mapping
64 channels to 3). To ensure that ϕr maps into [0, 1], we
send this output through a batchnorm layer, followed by a
sigmoid nonlinearity.

B. Observable network φf ’s architecture

φf is a two-layered multi-layered perceptron (MLP). The
first layer maps from 10 dimensions to 512, followed by a
leaky ReLU nonlinearity. The second layer maps from 512
dimensions to 31 dimensions (dimensionality of Z in our
implementation), followed by a leaky ReLU nonlinearity.

C. Recover network φr’s architecture

φr is similar to φf . It is a two-layered MLP. The first layer
maps from 31 dimensions to 512, followed by a leaky ReLU
nonlinearity. The second layer maps from 512 dimensions to
10 dimensions (dimensionality of Y in our implementation),
followed by a leaky ReLU nonlinearity.

First, we train the autoencoder. To build our dataset of
images, we ran the cart-pole OpenAI gym environment using
random actions until we had 10 000 images collected. We
used an L1 loss over pixels where the values are mapped to
the [0, 1] range. We trained for 50 000 iterations. The results
are shown in Figure 3.

In order to verify that multi-step prediction works well, we
use a test data set where for each episode, the same action
is applied 10 times. This allows the cart-pole stick to swing
completely in one direction, and thus we could see that
the system had learned how actions changed the dynamical
system. The results are shown in Figure 4. What these results

162

Authorized licensed use limited to: Université de Montréal. Downloaded on September 07,2022 at 18:01:08 UTC from IEEE Xplore. Restrictions apply.

G
ro

u
n

d
tr

u
th

k = 0

P
re

d
ic

ti
o
n

k = 2 k = 4 k = 6 k = 8

(a) Constant input of 0 (i.e., “move left”).

G
ro

u
n

d
tr

u
th

k = 0

P
re

d
ic

ti
o
n

k = 2 k = 4 k = 6 k = 8

(b) Constant input of 1 (i.e., “move right”).

Figure 4: Simulation and prediction of a cart-pole system with the same action is applied at every step. In each row, the
same input is applied for the whole episode. The DKRCI predictions agree with ground truth.

show is that we were able to train a model which can predict
future states in pixel space given a series of states and actions
applied using a Koopman representation. In other words,
we have appropriately learned a linear representation of our
nonlinear dynamical system entirely from data.

V. CONCLUSION

The Koopman operator, at its essence, trades a finite
dimensional nonlinear dynamical system for a linear but
infinite dimensional equivalent system. The linear nature of
the Koopman operator, and its approximation, is attractive
from both prediction and control perspectives. In this paper
we explored the DKRC framework, which combines the
power of deep neural networks with Koopman operator
based methods to synthesize a controller over the ground
truth state space. We showed how to extend this into the
image domain, as typically one doesn’t have access to the
underlying state space. Future work involves extending our
method to do control over this image domain. Specifically,
it is currently not clear how to define the error dynamics

so that the origin refers to a desired state, such as the cart-
pole being upright in the case of the cart-pole environment.
When one does this on the underlying state space (lateral
position d and cart-pole angle θ), one can use LQR to drive
the state to θ = 0 independent of the value d. It is difficult
to do that in image, latent or observation space because we
don’t have an explicit representation of d and θ.

ACKNOWLEDGMENT

This research was supported by the CIFAR Pan-Canadian
AI Strategy through a Catalyst Grant and Mitacs Accelerate
Fellowship.

REFERENCES

[1] B. Douglas, An Engineer’s Guide to The Fundamentals of
Control Theory, 2019, self-published e-book.

[2] L. Ljung, System Identification: Theory for the User. PTR
Prentice Hall, 1999.

163

Authorized licensed use limited to: Université de Montréal. Downloaded on September 07,2022 at 18:01:08 UTC from IEEE Xplore. Restrictions apply.

[3] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, pp. 436–444, 2015.

[4] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg,
B. Boots, and E. A. Theodorou, “Information theoretic MPC
for model-based reinforcement learning,” in 2017 Int. Conf.
Robotics and Automation, 2017, pp. 1714–1721.

[5] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee,
and J. Davidson, “Learning latent dynamics for planning from
pixels,” in Proc. 36th Int. Conf. Machine Learning, ser. Proc.
Machine Learning Research, vol. 97. PMLR, 2019, pp.
2555–2565.

[6] R. Sutton and A. Barto, Reinforcement Learning: An Intro-
duction. MIT Press, 2018.

[7] B. O. Koopman, “Hamiltonian systems and transformations in
Hilbert space,” Proc. National Academy of Sciences, vol. 17,
no. 5, pp. 315–318, 1931.

[8] A. Mauroy, I. Mezić, and Y. Susuki, The Koopman Operator
in Systems and Control. Springer International, 2020.

[9] M. Korda and I. Mezić, “Linear predictors for nonlinear dy-
namical systems: Koopman operator meets model predictive
control,” Automatica, vol. 93, pp. 149–160, 2018.

[10] I. Abraham and T. D. Murphey, “Active learning of dynamics
for data-driven control using Koopman operators,” IEEE
Trans. Robot., vol. 35, no. 5, pp. 1071–1083, 2019.

[11] G. Mamakoukas, M. Castano, X. Tan, and T. Murphey,
“Local Koopman operators for data-driven control of robotic
systems,” in Proc. Robotics: Science and Systems XV, 2019.

[12] D. Bruder, C. D. Remy, and R. Vasudevan, “Nonlinear system
identification of soft robot dynamics using Koopman operator
theory,” arXiv:1810.06637 [cs.RO], 2019.

[13] B. Lusch, J. N. Kutz, and S. L. Brunton, “Deep learning for
universal linear embeddings of nonlinear dynamics,” Nature
Communications, vol. 9, no. 1, pp. 1–10, 2018.

[14] Y. Han, W. Hao, and U. Vaidya, “Deep learning of Koopman
representation for control,” in 59th IEEE Conf. Decision
Control, 2020, pp. 1890–1895.

[15] G. Brockman, V. Cheung, L. Pettersson, J. Schneider,
J. Schulman, J. Tang, and W. Zaremba, “OpenAI Gym,”
arXiv:1606.01540 [cs.LG], 2016.

[16] Y. Xiao, X. Xu, and Q. Lin, “CKNet: A convolutional neural
network based on Koopman operator for modeling latent dy-
namics from pixels,” arXiv:2102.10205 [eess.SY],
2021.

[17] D. Bruder, B. Gillespie, C. D. Remy, and R. Vasudevan,
“Modeling and control of soft robots using the Koopman
operator and model predictive control,” in Proc. Robotics:
Science and Systems XV, 2019.

[18] I. Abraham and T. D. Murphey, “Active learning of dynamics
for data-driven control using Koopman operators,” IEEE
Transactions on Robotics, vol. 35, no. 5, pp. 1071–1083,
2019.

[19] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv:1412.6980 [cs.LG], 2014.

[20] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,”
arXiv:1502.03167 [cs.LG].

164

Authorized licensed use limited to: Université de Montréal. Downloaded on September 07,2022 at 18:01:08 UTC from IEEE Xplore. Restrictions apply.

		2022-08-24T17:56:19-0400
	Preflight Ticket Signature

