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Abstract— Current state-of-the-art vehicle safety systems,
such as assistive braking or automatic lane following, are
still only able to help in relatively simple driving situations.
We introduce a Parallel Autonomy shared-control framework
that produces safe trajectories based on human inputs even in
much more complex driving scenarios, such as those commonly
encountered in an urban setting. We minimize the deviation
from the human inputs while ensuring safety via a set of
collision avoidance constraints. We develop a receding horizon
planner formulated as a Non-linear Model Predictive Control
(NMPC) including analytic descriptions of road boundaries,
and the configurations and future uncertainties of other traffic
participants, and directly supplying them to the optimizer
without linearization. The NMPC operates over both steering
and acceleration simultaneously. Furthermore, the proposed
receding horizon planner also applies to fully autonomous ve-
hicles. We validate the proposed approach through simulations
in a wide variety of complex driving scenarios such as left-
turns across traffic, passing on busy streets, and under dynamic
constraints in sharp turns on a race track.

I. INTRODUCTION

Globally, over 3000 people are killed every day [1] in vehicle-
related accidents and over one hundred thousand are injured or
disabled on average. Worse still is that this number is continuing
to increase [2]. In the United States, 11% of accidents are caused
by driver distraction (such as cell phone use), 31% involve an im-
paired driver due to alcohol consumption, 28% involved speeding,
and an additional 2.6% were due to fatigue [3]. This troubling
trend has resulted in the continued development of advanced
safety systems by commercial car manufacturers. For example,
systems exist to automatically brake in the case of unexpected
obstacles [4], maintain a car in a lane at a given speed, alert users
of pedestrians, signage, and other vehicles on the roadway [5].
However, the scenarios that these systems are able to deal with
are relatively simple compared to the diverse and complicated
situations that we find ourselves in as human drivers routinely.
In this work we propose a framework for advanced safety in
complex scenarios that we refer to as Parallel Autonomy, which
minimizes the deviation from the human input while ensuring
safety. The design of the system has two main objectives: (a)
minimal intervention - we only apply autonomous control when
necessary, and (b) guaranteed safety - the collision free state
of the vehicle is explicitly enforced through constraints in the
optimization. Although the focus is on cars on roads one can
easily apply the method to other domains in robotics.
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Fig. 1. Parallel Autonomy in complex driving scenarios: Human driver
(red) tries to accelerate into an intersection, as shown by the red bar in the
lower left inset. However, given the future uncertainty of the other vehicles
positions the Parallel Autonomy system prevents the vehicle from continuing
and potentially inhibits a collision.

We provide a formulation and algorithmic solution to Paral-
lel Autonomy based on a non-linear Model Predictive Control
(NMPC) policy, under the assumptions of known current location
of the ego vehicle, the road boundaries, and of other vehicles
on the road. Uncertain predictions of future vehicle states in the
form of a posterior distribution are parameterized by their means
and covariances, which are assumed to be available, e.g. from an
inference framework. Specifically, we:

• Incorporate the time-varying uncertainty related to the dy-
namic obstacle predictions explicitly in the optimization,

• Follow the road by contour tracking within the shared con-
trol paradigm, introduce additional constraints for the road
boundaries and dynamic obstacles, while maintaining the
ability to plan over long time horizons (∼ 9s),

• Employ a non-linear model of the vehicle and simultane-
ously optimize over steering and acceleration.

The basic operation of the controller is shown in Fig. 1, where
the driver attempts to cut in front of oncoming traffic to make a left
turn, however the Parallel Autonomy system prevents this action
to avoid a collision with the oncoming vehicles.

This paper contributes:

• A formulation of Parallel Autonomy as a shared control
approach between humans and robots that adheres to the
minimal intervention principle and is able to handle complex
driving scenarios.

• The development of a real-time NMPC that operates over
both speed and steering, and long time-horizons.

In Sec. II we summarize the related work in the field whereas
in Sec. III we present the Parallel Autonomy control approach.
In Sec. IV we provide a concrete instantiation of the framework
and present the NMPC approach to solve it. Finally, we show
detailed simulation results and conclusions in Sec. V and Sec. VI
respectively.

II. RELATED WORKS

In this section we will provide an overview of the related work
in the areas of shared control for autonomous vehicles and Model
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Predictive Control (MPC).

A. Shared Control of Autonomous Vehicles
In theory, safety can be guaranteed if we can compute the set

of the states for which the vehicle will inevitably have a collision
and then ensure that we never enter that set. The set is referred to
by different terms in the literature, such as the capture set [6], [7],
the inevitable collision states (ICS) [8], [9], [10], and the target
set [11]. However, without some assumptions or limiting the
applicability to relatively simplistic scenarios, this set is difficult
to compute analytically. These ICS inspired methods tend to (a)
only intervene when the system is at the boundary of the capture
set, which can cause undesirable behavior and (b) toggle between
either the autonomous system input or the human input. We will
follow the idea of [6], [9], [10] and will define a set of probabilistic
constraints for collision avoidance.

In this work we directly incorporate the human inputs into
an optimization framework in a minimally invasive manner and
also add a soft nudging behavior to guide the driver. One of our
key objectives is to minimize the amount of deviation of the au-
tonomous system’s plan from the driver’s intent. This minimiza-
tion approach has also been formulated for driving applications in
various ways in the literature: Shia et al. [12] directly minimize
the difference of the steering angle necessary to achieve safe
trajectories and the human predicted input, and, similarly, Gao
et al. [13] minimize the difference in steering wheel angle only.
Erlien et al. [14] minimize the deviation from desired front wheel
lateral force with an additional discount factor with increasing
time. In contrast, our approach is capable of controlling steering
velocity and acceleration simultaneously. Alonso-Mora et al. [15]
minimize the deviation from human inputs, in this case orientation
and speed, via a convex constrained optimization to generate safe
motion of a wheelchair using velocity obstacles. We minimize
the (weighted) difference between the human and autonomous
system’s control inputs jointly in both steering and acceleration,
and are able to blend in additional trajectory-specific costs, while
strictly enforcing the safety constraints.

B. Model Predictive Control
A variety of MPC approaches applied to shared control for

vehicles exist in the literature. For example, Gray et al. [16] use
a hierarchical MPC approach for motion primitive based path
planning and path tracking that switches control to and from
the driver as a function of driver attentiveness to avoid static
obstacles. Anderson et al. [17] employ a constrained pathless
MPC approach blending human and controller inputs based on
a trajectory-criticality function controlling steering commands
only. Erlien et al. [14] define vehicle-stability and environmental
envelopes to supply safe steering commands at constant speed in a
discretized environment. Gao et al. [13] use robust NMPC to avoid
only static obstacles while tracking the roads center line over a
very short horizon of less than 1.5s. In contrast, our approach
can handle complex road scenarios with dynamic maneuvers
and obstacles, and to some extent uncertain environments with
steering and acceleration control over long horizons

For most related MPC methods in the literature [18], [17],
[19], [14] time dependent cost functions, and road constraints
need to be specified pre-optimization for specific time steps, or a
fixed path is generated and tracked [13]. The resulting divergence
from the initial conditions of the optimization can yield invalid
linearized constraints and unpredictable planning behavior. We
exploit recent advances in efficient Interior-Point solvers [20] and

directly solve the NMPC problem instead, focusing on making
all costs and constraints available to the solver without manual
linearization.

Model Predictive Contouring Control (MPCC) [21], [22] re-
laxes the timing and path constraint by parametrizing costs and
constraints by path progress instead of time inside a corridor. The
formulation is analogously applicable to vehicles following roads
[23].

III. PROBLEM FORMULATION

The Parallel Autonomy problem is based on two overarching
principles.

• Minimal intervention with respect to the human driver: the
control inputs to the vehicle should be as close as possible to
those of the human driver.

• Safety: The probability of collision with respect to the en-
vironment and other traffic participants is below a given
threshold.

A. Definitions
We use the discrete time shorthand k � tk, where tk = t0 +∑k
i=1 Δti, with t0 the current time and Δti the i-th timestep of

the planner. Vectors are bold.
1) Ego vehicle: At time k, we denote the configuration of the

ego-vehicle, typically position pk = (xk, yk), linear velocity vk,
orientation φk and steering angle δk, by zk = [pk, φk, δk, vk] ∈
Z . Its control input, typically steering velocity δ̇k and acceleration
ak, is labeled uk = [uδk, u

a
k] ∈ U .

The evolution of the state of a vehicle is then represented by a
general discrete dynamical system

zk+1 = f(zk,uk), (1)

described in Sec. IV-B.
Let B(zk) ⊂ R

2 be the area occupied by the ego-vehicle at
state zk. In particular, we model it as a union of circles as shown
in Fig. 3.

2) Other traffic participants: Other traffic participants, such
as vehicles, pedestrians and bikes, are indexed by i = {1, . . . , n}.
Their configuration and control input are given by zik ∈ Zi

and ui
k ∈ Ui. To incorporate uncertainty, we assume a posterior

distribution that describes the future state of the vehicles for up
to m timesteps is available, e.g. from an inference framework.
The distributions are parametrized by their mean state zi1:m and
covariance σi

1:m. High uncertainty in prediction can therefore be
reflected in the covariance σi

1:m.
At a given state, each traffic participant occupies an area

Bi(zik,σ
i
k, pε) ⊂ R

2 with probability larger than pε. Here pε is
the accepted probability of collision. We model them as ellipses
that grow in size with uncertainty, as described in the forthcoming
Sec. IV-E.

3) Free space: We consider the workspace W = R
2 and an

obstacle map O ⊂ W containing the static obstacles, such as the
limits of the road. We define the environment E(k) as the state of
the world (obstacles, traffic participants) at a time instance k.

B. Parallel Autonomy
We formulate a general discrete time constrained optimization

with m timesteps, with time horizon τ =
∑m

k=1 Δtk. We use
the following notation for a set of states z0:m = [z0, . . . , zm] ∈
Zm+1 and for a set of inputs u0:m−1 = [u0, . . . ,um−1] ∈ Um.

The objective is to compute the optimal inputs u∗0:m−1 for

the ego-vehicle that minimize a cost function Ĵh(u0:m−1,uh
0 ) +

Ĵt(z0:m,u0:m−1), where
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• Ĵh(u0:m−1,uh
0 ) is a cost term that minimizes the deviation

from the currently observable human input uh
0 .

• Ĵt(z0:m,u0:m−1) is a cost term that only depends on intrin-
sic properties of the planned trajectory. It can include various
optimization objectives such as energy minimization, com-
fort, or following a lane.

The optimization is subject to a set of constraints that represent:
(1) the transition model of the ego vehicle, (2) no collisions
with the static obstacles and (3) no collisions with other traffic
participants up to probability pε.

Given the posterior, parametrized by zi0:m and σi
1:m, for all

traffic participants i = 1, . . . , n and the initial state z0 of the ego
vehicle, the optimal trajectory for the ego vehicle is then given by

u∗
0:m−1 = argmin

u0:m−1

Ĵh(u0:m−1,uh
0 ) + Ĵt(z0:m,u0:m−1)

s.t. zk+1 = f(zk,uk)

B(zk) ∩ O = ∅
B(zk) ∩

⋃
i∈{1,...,n}

Bi(zik,σ
i
k, pε) = ∅

∀k ∈ {0, . . . ,m}.

(2)

IV. METHOD

In this section we describe the method to solve Eq. (2).

A. Overview

We formulate a NMPC to compute a safe trajectory for the
predefined time horizon. The constrained optimization consists of
the following costs and constraints.

1) Cost: To maintain generality of the problem formulation
while easing the understanding of the specifics of the instantiation,
the notation of Ĵh, Ĵt and Eq. (25) will be slightly altered to Jh,
Jt, cf. Eq. (24).

The cost term Jh is given by the deviation from the acceleration
and steering angle specified by the human driver. This term is
described in Sec. IV-F.

The cost term Jt is defined in Sec. IV-G and consists of
terms responsible for giving feedback to the driver if diverted
too far from the road’s center in the form of slightly nudging the
driver back into the correct direction without strong intervention.
Another term encodes making progress along a reference path—
typically the middle of the current lane, and one to improve
smoothness of the trajectory.

2) Constraints: The optimization is subject to a set of con-
straints: (1) to respect the transition model of the system, de-
scribed in Sec. IV-B, (2) to maintain the vehicle within the limits
of the road, indicated in Sec. IV-D and (3) to avoid other traffic
participants in the sense of guaranteeing a probability of collision
below pε, as given in Sec. IV-E.

3) Constrained Optimization: Since we do not currently
have a prediction over future driver commands, we propose a
linear combination between the cost Jh for minimal intervention
and the trajectory cost Jt. At the planning time, full weight is
given to the minimal intervention cost Jh and close to zero weight
to Jt. As planning time progresses the impact of Jt increases
and the weight of Jh decreases.The resulting MPC, which solves
Eq. (2), including the specific combination of costs is described in
Sec. IV-H.

B. Motion Model

Previous approaches utilized constant longitudinal speed and
small angle assumptions [14], [19], [17] in selected static obstacle
avoidance scenarios along simple straight roads. In contrast we
will consider the impact of longitudinal speed control for higher
safety in dynamic, more general and more complex traffic envi-
ronments.

The MPC’s motion model is a simplified car model with a fixed
rear wheel and a steerable front wheel with state z and controls
u as defined in Sec. III-A.1. The rear-wheel driven vehicle with
inter-axle distance L and continuous kinematic model⎡

⎢⎢⎢⎢⎣
ẋ
ẏ

φ̇

δ̇
v̇

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
ż

=

⎡
⎢⎢⎢⎣

v cos(φ)
v sin(φ)
v
L tan(δ)

0
0

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

0 0
0 0
0 0
1 0
0 1

⎤
⎥⎥⎥⎦
[
uδ

ua

]
︸ ︷︷ ︸

u

, (3)

is described by a discrete time model by integration zk+1 = zk +∫ k+Δtk
k ż dt = f(zk,uk).

We limit steering angle, ||δ|| ≤ δmax, steering speed, ||uδ|| ≤
δ̇max, and longitudinal speed, v ≤ vmax, to reasonable values
conforming to vehicle performance and the rules of the road, e.g.
speed limits.

We will account for and prohibit unsafe driving modes such as
high speeds in sharp turns by limiting the yaw-rate ||φ̇|| ≤ φ̇max,
as well as extreme breaking and accelerations amin ≤ ua ≤ amax

. As a result, slip is assumed to be sufficiently limited due to
reasonably less aggressive driving behavior. The modification is
in line with our main goal: driver safety.

C. Nonlinear Model Predictive Contouring Control

In this section we build on the MPCC method of [21], [22], [23]
and apply it to our problem setting. The MPCC approach is a good
choice for our parallel autonomy formulation since we don’t need
to enforce that the vehicle exactly follows a reference trajectory
or path, but instead stays within the corridor of safety limits.

1) Progress on Reference Path: The vehicle at position (xk,
yk) at time k tracks a continuously differentiable and bounded
two-dimensional geometric reference path (xP (θ), yP (θ)) of path
parameter θ with

t =

[
∂xP (θ)

∂θ
∂yP (θ)

∂θ

]
, n =

[
−∂yP (θ)

∂θ
∂xP (θ)

∂θ

]
(4)

being the tangential and normal vectors.

The heading of the path is described by:

φP (θk) = arctan

(
∂yP (θ)

∂xP (θ)

)
. (5)

The path is parametrized by the arc-length (∂θ/∂s = 1)
allowing us to estimate the progress of the vehicle with velocity vk
along the reference path along the vehicle’s actual path s =

∫
v dt.

While parametrization of curves by the arc-length is not trivial, if
the distance between knots is small in relation to their curvature,
spline parametrization is close to the arc-length. Since our vehicle
will follow a given road with sufficiently low deviation from the
reference, enforced by the road’s boundary, we can assume that

Δθ ≈ Δs = vΔt (6)
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holds. This additional assumption yields an approximated
progress along the path parameter

θk+1 = θk + vkΔtk (7)

where vkΔtk describes the approximated progress at time step k.
Ideally, we want to compute the path parameter θP (xk, yk) of the
closest point on the reference path to (xk, yk). Finding θP (xk, yk)
analytically is infeasible in the general case, which makes the
direct projection operator unsuitable for fast optimization. There-
fore, θP (xk, yk) is approximated by Eq. (7).

Fig. 2. Approximation of actual path abscissa θP by virtual integrator θk ,
and resulting approximation of lag error elk by ẽl(zk, θk), and contouring
error eck by ẽc(zk, θk). ẽc(zk, θk) is also used for an approximation of the
lateral distance of the vehicle to the reference path.

2) Longitudinal Error: The approximation of the curvilinear
abscissa θP (xk, yk) by θk introduces errors (cf. Fig. 2), if the
vehicle’s actual path deviates from the reference path. A first
order approximation of the resulting error of this approximation in
longitudinal direction of the vehicle with respect to the reference
path yields the lag error

ẽl(zk, θk) =
tTk
||tk||

[
xk − xP (θk)

yk − yP (θk)

]
(8)

= − cosφP (θk)
(
xk − xP (θk)

)
(9)

− sinφP (θk)
(
yk − yP (θk)

)
(10)

projecting the position error of the vehicle with respect to the
path’s abscissa θk along the path’s tangent tk, see Fig. 3.

For sufficiently small ẽl(zk, θk) the approximated path
progress is close to the actual curvilinear abscissa (Eq. (6)), and
θk ≈ θP (xk, yk). The lag error ẽl(zk, θk) needs to be strongly
penalized in the MPCC optimization to keep the error of the
approximated evolution θk along the path sufficiently small.

3) Contouring Error: The deviation of the vehicle’s actual
position from the estimated position is projected onto the path’s
normal and is called contouring error:

ẽc(zk, θk) =
nT
k

||nk||
[
xk − xP (θk)

yk − yP (θk)

]
(11)

= sinφP (θk)
(
xk − xP (θk)

)
(12)

− cosφP (θk)
(
yk − yP (θk)

)
(13)

It is thus a good measure of how far the vehicle deviates from a
given reference path.

The MPCC cost function

JMPCC(zk, θk) = eTk Qek − vk (14)

with path error vector formed from lag and contouring error

ek =

[
ẽl(zk, θk)
ẽc(zk, θk)

]
(15)

balances the trade-off between contouring error, lag error, and
approximated path progress vk.

D. Road Representation

All vehicles’ reference paths are parametrized by C1-
continuous clothoids following the road network through pre-
specified points. We approximate the clothoids by cubic-splines
of closely spaced knots parametrizing the spline by the arc-length
to sufficient accuracy. In contrast to computationally expen-
sive evaluation of clothoids, cubic splines provide an analytical
parametrization of the reference path, boundaries of the road, and
their derivatives needed for solving the nonlinear optimization.

The signed lateral distance d(zk, θ) of the vehicle’s position
(xk, yk) to the reference path is given by the projection along the
normal of the reference path at the actual curvilinear abscissa θP ,
again approximated by θk such that d(zk, θk) = ẽc(zk, θk).

The free and drivable space of the ego vehicle at the path
abscissa θk is limited by both the left road boundary bl(θk)
and the right road boundary br(θk) which are parametrized by
cubic splines to enable analytic evaluation and derivation. The
boundaries may also enclose other static obstacles.

The ego vehicle’s lateral offset to the path is limited by

bl(θk) + wmax ≤ d(zk, θk) ≤ br(θk)− wmax (16)

where wmax is an upper bound on the vehicle’s outline projected
onto the reference path’s normal. wmax is larger than half the
vehicle’s width, since the ego vehicle’s relative orientation to the
path needs to be accounted for, e.g. when it turns. We constrain
the difference between the ego vehicle’s heading φk and the path’s
heading φP (θk)

||φk − φP (θk)|| ≤ Δφmax (17)

to maintain validity of wmax as an upper bound. Simply taking
the vehicle’s radius as an upper bound turned out to be too
conservative.

Fig. 3. Ego vehicle (red) approximated by circles of radius rdisc and
other vehicle (blue) with shape- and uncertainty-ellipse corresponding to
minimum occupancy probability pε. Road boundaries bl(θ) on the left and
right br(θ) of reference path (xP (θ), yP (θ)).
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E. Representation of Other Traffic Participants

For brevity we will refer to all traffic participants, such as
vehicles, pedestrians, bicyclists, as vehicles. The shapes of other
vehicles are approximated by a footprint encompassing ellipse of
orientation φ with semi-major axes ashape and bshape in longitudinal
and lateral direction of the obstacle respectively, cf. Fig. 3. For
brevity, index i is omitted in this section. Consequently an analyt-
ical description of their occupied area is available, that will prove
useful for describing collision states in closed analytic form. The
evolution of their future trajectories are assumed to be known up
to some uncertainty in the form of a posterior distribution and
are parametrized by a mean trajectory zi0:m−1 and uncertainty
σ0:m−1. In the more general case these should be supplied by
an external inference framework. For our instantiation we supply
a model of the growth of uncertainty

σk+1 = σk + σΔtk, (18)

of the vehicles position with uncertainty σk = [σa
k , σ

b
k]

T at time

k, and σ = [σa, σb]T the growth of uncertainty. The variances
are approximated to be aligned with the vehicle’s heading and
thus the principle axis of the encompassing ellipse (cf. Fig. 3).
The uncertainty growth in the lateral direction is bounded to a
maximum value to take the high likelihood of vehicles staying in
their current lanes into account.

The level-set lines of the Gaussian N (0, diag(σk)) describing
the position uncertainty of the other traffic participants at the level
of pε form ellipses with coefficients[

aσk

bσk

]
=

[
σa
k

σb
k

](
−2 log(pε2πσ

a
kσ

b
k)
)1/2

. (19)

We can now use the axis alignment to the vehicle and directly
add the coefficients to the semi-major axes to find the obstacle’s
ellipse with occupancy probability above the pε threshold.

The rectangular shape of the ego car is approximated by a set
of discs of radius rego, cf. Fig. 3. It is necessary to employ discs
instead of ellipses for the ego vehicle, since the ego vehicle and the
other vehicles are not necessary axis aligned and the Minkowski
sum can not be easily derived for non-axis aligned ellipses in
closed form. The Minkowski sum of the ego car’s discs and
the previously derived occupancy-ellipse form analytic collision
constraints

cobst.,i
k (zk) =[

Δxj
Δyj

]T
R(φ)T

[
1
a2 0

0 1
b2

]
R(φ)

[
Δxj
Δyj

]∣∣∣∣∣
k,i

> 1,

∀j ∈ {1, . . . , 4} (20)

where Δx, Δy are the distance of the ego vehicle’s discs to the
center of the obstacle i at time k. R(φ) is the rotation matrix
corresponding to the obstacles heading, and[

a
b

]
=

[
ashape + aσk + rdisc

bshape + bσk + rdisc

]
. (21)

the semi-major axes of the resulting constraint-ellipse. We now
have an analytic constraint prohibiting collisions of probability
higher than pε with other vehicles.

F. Minimal Intervention
It is our goal to follow the human input very closely and

intervene only when deemed necessary. The minimal intervention
cost term

Jh(zk,uk,uh
0 ) =

[
uak − ah0
δ − δh0

]T
K

[
uak − ah0
δ − δh0

]
(22)

penalizes the deviation of the system’s state from the human
driver commanded current controls uh

0 = [δh0 , a
h
0 ]

T , the steering
angle δh and acceleration ah at time tk. In our setup we can
only observe the driver steering angle δh and acceleration ah, but
not the steering speed δ̇h. Nonetheless, the framework is general
enough to also take the steering velocity as human input into
account, if observable. The vehicle controls uk remain steering
velocity and acceleration.

G. Trajectory Cost
The trajectory cost contains the MPCC cost, Eq. (15), and

additionally penalizes control inputs and yaw rate to create a
smooth driving behavior and increase comfort. Weights R and A
allow for different prioritization.

Jt(zk,uk, θk) = JMPCC(zk, θk) + uT
k Ruk + φ̇kAφ̇k (23)

JMPCC already encodes the penalization of the deviation from the
reference path which results in a slight nudging behavior into
a beneficial direction. It also takes the driver’s goal of making
progress along the road into account.

H. Optimization
We minimize the linear combination of the cost of intervention

Jh (22) and trajectory cost Jt (23)

J(zk,uk, θk,uh
0 ) =

βω(tk)Jh(zk,uk,uh
0 ) + (1− ω(tk)) Jt(zk,uk, θk) (24)

weighted by β and an exponential decay function w(tk) =
exp(−αtk) to increase the impact of the human input in the short-
term. We used a sharp drop-off, such that w(0.5s) = 0.1, and
high values of β to make the system very responsive to human
inputs but rely on Jt for steps further into the future. This strategy
enables us to plan sufficiently well, without a prediction of driver
intent or planned trajectory, since the planner’s trajectory will
snap into place shortly before the boundaries of constraints are
met and is perceived as inactive to the human driver otherwise.
We formulate the optimization problem with the aforementioned
state-, dynamics-, path- and obstacle constraints and form the
following constraint non-linear optimization problem:

u∗
0:m−1 = argmin

u0:m−1

m∑
k=0

J(zk,uk, θk,uh
0 )Δtk (25)

s.t. zk+1 = f(zk,uk) (26)

θk+1 = θk + vkΔtk (7)

zmin < zk < zmax (27)

umin < uk < umax (28)

||φ̇k|| < φ̇max (29)

||φk − φP (θk)|| < Δφmax (17)

bl(θk) + wmax ≤ d(zk, θk) ≤ br(θk)− wmax (16)

cobstacle,i
k (zk) > 1, i = {1, . . . , n} (21)

∀k ∈ {0, . . . ,m}
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At initialization the path (xP (θ), yP (θ) and boundaries bl(θ) and
br(θ) are given by the road and static obstacles, cf. Fig. 4. At
the beginning of each control loop the initial states z0, θ0, human
control input uh

0 , and predictions of other traffic participants zi0:m,
σi
0:m are provided to the NMPC. After solving Eq. (25) the

optimal control u∗
0 is executed by the system. The optimization

problem is solved by a Primal-Dual Interior Point solver generated
by FORCES Pro [20].

NMPC

Environment

Ego VehicleHuman
Driver

Fig. 4. Control scheme of the NMPC

V. RESULTS

We evaluate the capabilities of our approach in a variety of sim-
ulated scenarios. The human driver controls a physical steering
wheel and pedals which generate the desired steering angle δh0
and acceleration ah0 . The inputs are then processed in the MPC
formulation to guarantee safe motion. The reference path and the
road boundaries bl and br are designed to fit the road network.

A. Sharp Turn
In this scenario, cf. Fig. 5(a), the vehicle enters a sharp left turn

on a race track. The current human inputs would cause the vehicle
to quickly leave the road at high speed, as shown by the red line.
The controller brakes the vehicle to a safe speed complying with
the yaw-rate constraint, then accelerates at the exit of the turn to
maximize progress, while always respecting the roads limits.

The planned trajectory shows similarities to a racing line dur-
ing high-speed cornering. This behavior shows the advantage of
longitudinal and lateral control; without deceleration the vehicle
would not have been able to complete the turn shown by the red
line in Fig. 5(a). The plan maintains a smooth acceleration profile
during the turn, cf. Fig. 5(b).

B. Left Turn Intersection and Merging Into Traffic
In this challenging left turn cross traffic scenario the initial

position and velocity profiles of all other traffic participants are
randomly generated. To increase the time horizon of the planner
without sacrificing computation, we adopt a variable step size
approach. For sufficient temporal resolution in the short term the
first 10 steps are spaced by Δtk = 0.1s and Δtk = 0.2s for the
remaining 40 steps, resulting in a planning horizon of nearly 9s
with all computations done in real-time, cf. Sec.V

We have evaluated the method in a set of 50 randomly gener-
ated scenarios without any resulting collisions despite deliberately
giving the system unsafe inputs which would have resulted in
crashes without the proposed Parallel Autonomy system. Further-
more, the system did not cause any collisions which would not
have happened without it.

We present two representative examples, for two different hu-
man driving styles. In the first case, cf. Fig. 6, an aggressive driver
nearly collides with the right road boundary even before entering
the intersection 1 . Then, the driver tries to accelerate into the

intersection 2 , although other vehicles are just passing. Our
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(a) MPC plan of vehicle, where vehicle poses are 0.1s apart for
a horizon of 5s. Red line shows the constant steering angle and
acceleration propagation of the human input for a horizon of 2s.
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(b) The limit of yaw rate (1rad/s) (left) causes the vehicle to
decelerate (right) and accelerate again at the end of the turn.

Fig. 5. Sharp Turn: Output of MPCC plans to decelerate into the sharp
corner to comply with a yaw-rate constraint of 1rad/s.

system brings the ego vehicle to a full stop, lets the other vehicles
pass and then proceeds by letting the driver merge into the traffic
when a large enough gap appears. At 3 the driver approaches
a preceding vehicle with high relative speed and tries to collide
by accelerating even further. Our system brakes the ego vehicle
and allows an overtaking maneuver once the oncoming traffic has
passed. At 4 the driver erratically tries to break through the right
road boundary, which is prohibited by our system. In all these
cases the system can guard the human driver from actually causing
any harm to himself and others.

The opposite spectrum of how our method reacts is shown
in Fig. 7: A fairly good and calm driver experiences the same
previous scenario. We observe that if the inputs from the human
driver are deemed safe, barely any difference between human and
system inputs occurs. The system thus minimizes intervention
if no critical situations occur. Since steering the vehicle with
steering wheel and pedals in simulation is not an easy task, due to
the lack of feedback, the human driver did not break sufficiently
at 2 and misses to counter steer during a lane change maneuver

4 . Notice how the system allows the driver to stay stationary at
the intersection longer than necessary for safety. We can see that
the trajectory cost Jt, which includes a path-progress term, does
not cause the vehicle to start driving if the human driver does not
intend to. The short term impact of the minimal intervention cost
Jh always dominates the trajectory optimization if safety can be
assured.

C. Impact of Uncertainty
Taking the uncertainty in the prediction of other vehicles into

account is important, since future states can deviate substantially
from the expectation. In the case of neglecting uncertainties the
planned behavior can be more aggressive and is given larger
leeway in the constraints. See Fig. 8-bottom, where the vehicle is
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Fig. 6. Aggressive left turn with traffic: The system’s steering angle and acceleration are displayed in blue, the human input in red. Snapshots of the
current scenes at specific time-stamps are displayed above the acceleration and steering plots: The ego vehicle in red, the MPC planned path in blue. All
other vehicles in black. An aggressive driver causes multiple critical situations where the system is forced to intervene to large amounts to keep the vehicle
in a safe state. Large deviation from the driver’s desired acceleration and steering wheel angle to the actual system output are observable. E.g. collision at
time (2) is prohibited by strong braking.
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Fig. 7. Normal left turn with traffic: System output stays close to the desired human acceleration and steering wheel angle. An exception appears at (4)
where the driver is not counter steering enough to prohibit a predicted collision with the left road boundary.

allowed to merge into the lane in front of a second vehicle. Taking
future obstacles’ uncertainty growth into account, cf. Fig. 8-top,
results in more conservative behavior and the ego vehicle is
prohibited from merging.

D. Computation Time

The NMPC solve-times collected during several runs are dis-
played in Fig. 9. Results were computed on an off-the-shelf
Intel Core i5-4200U mobile CPU @ 1.6 GHz, 2.6 Ghz Turbo
Boost, and 6 GB RAM. We observed a strong influence of the
complexity of the scenario on the computation time. In the case
of no dynamic obstacles we saw solve-times of less than 30ms

Fig. 8. Comparison of NMPC plans with uncertainty estimate (top)
and without (bottom) shown by the ellipses representing their occupancy
probability threshold. Predicted future states are shown in fading colors
0.4s apart over a horizon of 9s.
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Fig. 9. Computation times for the different human in the loop scenarios and
varying number of other traffic participants, and high uncertainty. Finally
the case of AI only, without the human in the loop.

even for a challenging race track with many tight turns, forcing the
MPC to intervene and decelerate due to turn-rate constraints. In
cases where the system needs to nudge into tight gaps while simul-
taneously deciding whether a subsequent overtaking maneuver is
feasible, computation times can reach up to 65ms in exceptional
cases. Our system was able to reach the goal replanning frequency
of 10Hz at all times.

VI. CONCLUSION

In this work we presented a receding horizon planner that
minimizes deviation from the human input while ensuring safety
according to our proposed general Parallel Autonomy control
framework. We have shown the increased functionality compared
to other approaches in complex and more realistic driving scenar-
ios.

Future work will include evaluation on a real vehicle platform
as well as a more involved system model derived via an identifica-
tion step including combined slip and load-transfers. Further tests
will also enclose an inference framework to gain more elaborate
predictions of other traffic participants. The presented framework
may be applied to more general scenarios including a larger
variety of dynamic obstacles such as pedestrians, bicycles, trucks,
as well as a larger variety of environments including stop-signs
and traffic lights by small adaption of our set of constraints.

Furthermore, the proposed receding horizon planner also ap-
plies to fully autonomous vehicles if the minimal intervention cost
is excluded and future experiments will show the functionality.

The widespread deployment of our method in vehicle systems
would help to reduce the massive number of vehicular injuries
and fatalities, as well as provide a safe pathway towards the
development of fully autonomous vehicles.
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