
Perpetua: Multi-Hypothesis Persistence Modeling
for Semi-Static Environments

Miguel Saavedra-Ruiz1,2, Samer B. Nashed1,2, Charlie Gauthier1,2, Liam Paull1,2

Combine
Components

Select
Heaviest
Weighted

Component

Fig. 1: Perpetua models the presence and absence, also known as feature persistence, of semi-static features through a combination of two mixtures models,
one for disappearance (mixture of persistence filters) and one for reappearance (mixture of emergence filters), combined with a switching mechanism to toggle
between them. In the above figure, the mixture of emergence and persistence filters (left panel) each have two components, which combine to make 4 possible
outcomes (middle). Based on the available measurements, we select the most likely combination (right) to model the persistence of a semi-static feature.

Abstract—Many robotic systems require extended deployments
in complex, dynamic environments. In such deployments, parts of
the environment may change in between subsequent observations
by the robot. Few robotic mapping or environment modeling
algorithms are capable of representing dynamic features in a
way that enables predicting their future state. Instead, most
approaches opt to filter certain state observations, either by
removing them or some form of weighted averaging. This paper
introduces Perpetua, a method for modeling the dynamics of semi-
static features. Perpetua is able to: incorporate prior knowledge
about the dynamics of the feature if it exists, track multiple
hypotheses, and adapt over time to enable predicting their future
state. Specifically, we chain together mixtures of “persistence”
and “emergence” filters to model the probability that features
will disappear or reappear in a formal Bayesian framework. The
approach is an efficient, scalable, general, and robust method
for estimating the state of features in an environment, both
in the present as well as at arbitrary future times. Through
experiments on both simulated and real-world data, we find
Perpetua yields better accuracy than similar approaches while
also being online adaptable and robust to missing observations.

I. INTRODUCTION

Effective robotic planning requires accurate state estimation
of the robot’s operating environment. However, achieving this
for both present and future time steps, and for aspects of
the environment not currently visible, is particularly challeng-
ing due to partial, noisy sensor data and the potential for
complex, semi-static feature dynamics wherein features (e.g.,
points, lines, surfels, objects) may appear or disappear between
observations. While recent research has shown the value of
estimating the state of semi-static features, sometimes called
persistence estimation, for tasks such as localization [1], [2],

1Department of Computer Science and Operations Research, Université de
Montréal. 2Mila - Quebec AI Institute.

mapping [3], [4], navigation [5]–[7], and planning [8], our
ability to estimate persistence in practice remains limited.

Many semi-static changes exhibit a time-dependent nature,
such as an office door being open on weekdays and closed
on weekends, allowing the possibility of learning persistence
estimators that can capture the qualitative dynamics and pre-
dict future changes [5], [9]. In addition, ideal solutions should
also be (1) robust to partial observations, (2) adaptable and
updatable online, (3) capable of representing multiple dynamic
modes (e.g., hourly versus daily changes), and (4) reliant on
minimal prior knowledge.

Methods for estimating or predicting feature persistence fall
on a spectrum, with filtering methods such as those based
on the persistence filter introduced by Rosen et al. [10] on
one end, and predictive methods, such as FreMen [5], on the
other. Contemporary persistence filtering methods [2], [11] are
typically highly adaptable and robust to observation noise, but
have difficulty modeling feature reappearance, and often re-
quire accurate priors over model parameters to be effective. In
contrast, predictive methods can model feature reappearance,
learn dynamics from data (albeit offline), and capture multiple
dynamic modes. However, they cannot adapt to new informa-
tion online and are susceptible to noise in the training data.

This paper proposes Perpetua (Fig. 1), an efficient method
for estimating the persistence of semi-static features that com-
bines the benefits of both filtering and predictive approaches,
enabling robustness to missing observations, online adaptation
from data, future persistence prediction, characterization of
multiple dynamical hypotheses, and reduced dependence on
prior knowledge. To achieve this, we first develop a posterior
inference framework that jointly estimates persistence and
latent mixture components within a mixture of persistence

https://mikes96.github.io
https://samernashed.github.io
https://velythyl.github.io
https://liampaull.ca

filters modeling multiple feature dynamics (§IV-A). Next, we
derive an emergence filter, based on the persistence filter, to
capture feature reappearance (§IV-B), and show how to com-
bine mixtures of persistence and emergence filters via a state
machine to track and predict the disappearance and reappear-
ance of features arbitrarily far into the future (§IV-C). Finally,
we derive an expectation-maximization-based approach for
learning model parameters from noisy observations (§IV-D).

Empirically, Perpetua’s persistence estimates are more ac-
curate than baseline methods over a variety of prediction
horizons while remaining robust to sensor noise and missing
observations. Experiments are conducted on both simulated
and real-world datasets exhibiting semi-static changes. Web-
page at: https://montrealrobotics.ca/perpetua

II. RELATED WORK

Modeling, tracking, and predicting feature persistence has
been an important topic in robotics [12]–[14]. Generally,
work in this area falls into one of four broad categories:
(1) modeling via Markov chains, (2) using deep learning,
(3) predictive models, and (4) filters. Markov chain methods
represent presence and absence as states, and model dynamics
as state transitions [15], [16]. While these approaches can learn
parameters from data, they are limited to predicting future
persistence at fixed intervals, rather than continuously.

On the other extreme, deep learning-based methods have
shown an ability to estimate feature persistence, for example,
by using object-graphs built from latent representations of
point clouds [17], or training neural classifiers to predict posi-
tion, state, and variability of objects on a 3D scene graph [18].
Thomas et al. [19] employ a kernel point convolution network
to predict spatio-temporal occupancy over short time windows.
However, except for Thomas et al., these methods cannot
predict future persistence and many require large amounts of
labeled data for training.

Many approaches use either predictive models or filters. Pre-
dictive models often relax the assumption of known priors over
feature dynamics, and one of the most well-known predictive
models is FreMen, introduced by Krajnı́k et al. [5], which
models feature persistence using Fourier analysis enabling
future persistence estimates at any time via an inverse Fourier
transform. Later, FreMen was extended to jointly model
persistence over space and time [20]. Other methods have
proposed using Guassian processes over dynamic Hilbert maps
for continuous future occupancy prediction [21], or employed
autoregressive moving average models (ARMA) to estimate
and predict persistence [9], [22]. Although these methods offer
strong predictive capabilities, they lack online adaptability and
rely on observation sequences for training.

Filtering methods, and in particular the persistence filter [10]
and its derivatives (e.g. [11], [23]), have several important
strengths, including robustness to noisy observations, real-time
adaptation, and a strong theoretical foundation. While they can
predict persistence at future time steps, these models generally
become inaccurate quickly. Deng et al. [23] addressed this by
introducing a long short-term exponential model that updates

persistence estimates by prioritizing the latest observation, but
this approach remains sensitive to observation noise. The main
drawbacks of such methods are the reliance on accurate a
priori model parameters, a single persistence hypothesis per
feature, and the inability to handle feature reappearance.

Perpetua unifies key aspects of these methods: adaptability
and noise resilience of online methods, and predictive power
and robustness to priors of offline methods. We extend the
persistence filter to a mixture model to track multiple dynamic
modes, introduce the emergence filter to model reappearance,
present a method for switching between filters, and derive an
algorithm for learning model parameters directly from data.

III. BACKGROUND AND PRELIMINARIES

A. Problem Definition

We consider an agent making repeated observations of an
environment undergoing semi-static changes, where features
appear and disappear over time, but where these transitions are
not necessarily observable. Our goal is to model and predict
the presence or absence of features, also known as feature
persistence, at any time t ∈ [0,∞). Let Xt ∈ {0, 1} represent
the persistence of a feature at time t, where Xt = 1 indicates
presence and Xt = 0 indicates absence. Given a sequence
of noisy observations modeled as Boolean random variables
{Yti}Ni=1 ⊆ {0, 1}N , sampled at times {ti}Ni=1 ∈ [t0,∞), the
goal is to infer the belief over feature persistence. We make
no assumption about the type of sensor used for observation.

B. The Persistence Filter

The Persistence filter [10], is a probabilistic model rooted
in Bayesian survival analysis [24] that describes the survival
time, or the length of time a feature exists before disappearing,
of semi-static features. The persistence model is defined as

T ∼ pT (·),

Xt | T =

{
1, t ≤ T,
0, t > T,

Yt | Xt ∼ pYt(· | Xt);

(1)

where pT : [0,∞] → [0,∞] is a probability density function
that denotes the prior over survival time T ∈ [0,∞), and
pYt

(· | Xt) is a conditional distribution that denotes the
measurement model for some time t ∈ [0,∞). In this model,
Xt = 1 is equivalent to T ≥ t, and we will use them
interchangeably. The measurement model is characterized by
the probability of missed detections PM = p(Yt = 0|Xt = 1),
and the probability of false alarm PF = p(Yt = 1|Xt = 0).
Further, let the cumulative distribution function (CDF) of pT
be FT (t) ≜ p(T ≤ t) =

∫ t

0
pT (τ)dτ.

Given a sequence of noisy observations Y1:N ≜ {yti}Ni=1

and the parameters of the measurement model PM , PF ∈
[0, 1], Rosen et al. [10] derived a closed-form solution to
compute the posterior probability p(Xt = 1 | Y1:N) at any
present or future time t ∈ [tN ,∞)

p(Xt = 1 | Y1:N) =
p(Y1:N | T ≥ t)p(T ≥ t)

p(Y1:N)
. (2)

The general form of the measurement model p(Y1:N | T),
which accounts for both cases T ≥ t and T < t, is given by

p(Y1:N | T) =
∏
ti≤T

P
1−yti

M (1−PM)yti

∏
ti>T

P
yti

F (1−PF)
1−yti .

(3)
Thus, the measurement model p(Y1:N | T≥ t) ≜ p(Y1:N | tN)
in (2) for tN>tN−1, tN−2, . . . is computed recursively as

p(Y1:N | T ≥ t) =
N∏
i=1

P
1−yti

M (1− PM)yti . (4)

As (3) is right-continuous and constant on the interval
[ti, ti+1), the evidence p(Y1:N) can be efficiently computed
as a sum over disjoint time intervals for all i ∈ {0, 1, . . . , N}

p(Y1:N) =

N∑
i=0

p(Y1:N | ti)[FT (ti+1)− FT (ti)], (5)

where t0 = 0 and tN+1 =∞. Rosen et al. [10] showed that (5)
can be iteratively updated by decomposing p(Y1:N) as

p(Y1:N) = L(Y1:N) + p(Y1:N | tN)[1− FT (tN)], (6)

with L(Y1:N) ≜
∑N−1

i=0 p(Y1:N | ti) [FT (ti+1)− FT (ti)]
denoting the lower partial sum of the evidence, obtained by
excluding the contribution of the N th term in (5). In turn, it
is easy to iteratively update L(Y1:N) as

L(Y1:N) =P
ytN

F (1− PF)
1−ytN (L(Y1:N−1)+

p(Y1:N−1 | tN−1)[FT (tN)− FT (tN−1)]).
(7)

Combining (4), (6), and (7), and noting that the prior follows
from p(T ≥ t) = 1 − FT (t), the persistence filter can
be iteratively updated in constant time as new observations
arrive. Despite its advantages, the persistence filter and its
extensions are constrained by three key limitations: (i) there
is only a single persistence hypothesis, restricting cases where
the feature may exhibit multiple plausible dynamics; (ii) once
a feature vanishes, it is considered permanently gone, even
when it may reappear, and (iii) the parameters of the prior are
known a priori and not learned from data. In the next section,
we present Perpetua, a method that adapts and extends the
persistence filter in order to address these limitations.

IV. PERPETUA

The key idea of Perpetua is to estimate a belief over
feature persistence of each feature in the environment using
a pair of mixture models: a mixture of persistence and
emergence filters. These models capture the time-dependent
state transition probability of appearance 0 → 1 (emergence)
and disappearance 1 → 0 (persistence), and are used in
combination within a state machine that transitions based on
the belief of these filters. At a high level, there are three
important subroutines within Perpetua: (1) the mixture models,
(2) the Perpetua state machine, and (3) parameter learning.
When combined, these subroutines produce a system that can
update its belief about the state online and predict arbitrarily
far into the future in a principled manner.

.

Fig. 2: Persistence estimates from Perpetua using mixture sizes of K = 2
(top) and K = 1 (bottom). From t0 to t1, persistence estimates adapt
to the dynamics given the current noisy observations. Between t1 and t2,
Perpetua uses the component with the largest posterior weight to predict
feature persistence in the absence of observations. At t2, observations resume.
Perpetua (K = 2) adapts its persistence estimate correctly, switching to the
mixture component that best explains the data, while Perpetua (K=1) cannot.

A. Mixture of Persistence Filters

Handling multiple persistence hypotheses for the survival
time T is crucial, as the persistence Xt may have complex
dynamics, or a lack of observations may create multiple
equally plausible estimates for T . This section extends the
persistence filter to a mixture model, computing the posterior
not only over survival time but also over latent mixture
components. This allows selecting the most likely component
based on available measurements of a given feature.

We extend the first line in (1) with an additional latent
variable C ∼ Categorical(π), which models the mixture
components, where C ∈ {1, 2, . . . ,K}, ∑K

k=1 πk = 1, and
p(C = k) = πk. The mixture of persistence filters is

T | C = k ∼ pTk
(· | C = k), (8)

with key differences from (1) being the categorical prior over
mixture components C, and a conditional prior pTk

(· | C = k)
for each mixture component. The rest of the model is identical
as in (1).

To simplify the expressions in this section, we adopt the
following notation: Xt = 1 → X1

t and C = k → Ck. We
aim to compute the joint posterior p(X1

t , Ck | Y1:N) of this
mixture model at t ∈ [tN ,∞). Applying Bayes’ rule, we have

p(X1
t , Ck | Y1:N) =

p(X1
T | Ck,Y1:N)p(Ck,Y1:N)

p(Y1:N)
, (9)

where p(Ck,Y1:N) is the joint evidence and the conditional
posterior p(X1

t | Ck,Y1:N) is the probability that Xt = 1,
according to component k and given observations Y1:N . Here,
each p(X1

t | Ck,Y1:N) represents a persistence filter. Applying
Bayes’ rule to decompose the conditional posterior, we have

p(X1
t | Ck,Y1:N) =

p(Y1:N | X1
t)p(X

1
t | Ck)p(Ck)∫∞

0
p(Y1:N | τ)p(τ | Ck)p(Ck)dτ

=
p(Y1:N | X1

t)p(X
1
t | Ck)

p(Y1:N | Ck)
.

(10)

The denominator of (10), p(Y1:N | Ck), is the conditional
evidence, which can be computed using (5). Specifically, we
can iteratively update the conditional evidence p(Y1:N | Ck)
by first updating (7) as

L(Y1:N | Ck) =P
ytN

F (1− PF)
1−ytN (L(Y1:N−1 | Ck)

+ p(Y1:N−1 | tN−1)AN), (11)

and plugging in L(Y1:N | Ck) and FTk
(tN)≜

∫ tN
0

pTk
(τ)dτ

into (6). Both AN≜FTk
(tN)− FTk

(tN−1), and p(Y1:N | Ck)
are computed for all mixture components. Note that the likeli-
hood p(Y1:N |tN) is recursively updated the same way as in (4)
and the conditional prior can be computed as p(X1

t | Ck) =
1 − FTk

(t), for all k ∈ {1, 2, . . . ,K}. Once the conditional
evidence p(Y1:N | Ck) is computed, the joint p(Ck,Y1:N) and
marginal evidence p(Y1:N) can be efficiently obtained as

Joint → p(Ck,Y1:N) = p(Y1:N | Ck)p(Ck), (12)

Marginal → p(Y1:N) =

K∑
k=1

p(Y1:N , Ck). (13)

Putting together (4), (6), and (11)-(13), we have a recursive
Bayesian estimator for the conditional p(X1

t | Ck,Y1:N) and
joint posterior p(X1

t , Ck | Y1:N) for t ∈ [tN ,∞).
By marginalizing the joint posterior p(X1

t | Y1:N) =∑K
k=1 p(X

1
t , Ck | Y1:N), we recover the original persistence

filter, where the effects of all mixture components are ag-
gregated. However, due to potential destructive interference
between mixture components, we instead use the component
with the largest weight. We do this using the posterior weights
p(Ck | Y1:N) = p(Ck,Y1:N)

p(Y1:N) , derived from the joint and
marginal evidence. Therefore, the probability of the compo-
nent with the largest posterior weight at time t ∈ [tN ,∞) is

p(X1
t | Ck∗ ,Y1:N) s.t. k∗ = argmax

k
p(Ck | Y1:N). (14)

The procedure for estimating Xt using a mixture of persis-
tence filters is outlined in Alg. 1. While mixtures of persistence
filters handle multiple persistence hypotheses, once the filter
state changes to “absence,” it becomes difficult to revert
to “presence” even with new observations. In the following
section, we will address this problem by deriving a related
model, called a mixture of emergence filters, that allows us to
model the dynamics of feature reappearance.

B. Mixture of Emergence Filters

Instead of modeling feature disappearance, the mixture of
emergence filters models feature reappearance. The derivation
of this model follows similar steps as the mixture of persis-
tence filters with some key differences. We start by updating
the conditional Xt | TE as

Xt | TE =

{
0, t ≤ TE

1, t > TE ;
(15)

here, TE is the emergence time, representing the time it takes
for a feature to reappear after disappearing. This formulation

Algorithm 1 The Mixture of Persistence Filters

Input: Observation model (PM , PF), CDFs FTk
(·), prior

mixture weights p(C), and observations {yti}
Output: Probability p(X1

t | Ck∗ ,Y1:N) for t ∈ [tN ,∞).
1: for k ∈ {1, . . . ,K} do
2: t0 ← 0; N ← 0; L(Y0 | Ck)← 0
3: p(Y0)← 1; p(Y0 | t0)← 1; p(Y0 | Ck)← 1
4: end for
5: while ∃ new observation ytN+1

and ∀k ∈ {1, . . . ,K} do
Update:

6: Compute partial evidence L(Y1:N+1 | Ck) via (11).
7: Compute likelihood p(Y1:N+1 | tN+1) via (4).
8: Compute conditional evidence p(Y1:N+1|Ck) via (6).
9: Compute joint evidence p(Ck,Y1:N) via (12).

10: Compute marginal evidence p(Y1:N) via (13).
11: N ← (N + 1)

Predict: (For any time t ∈ [tN ,∞))
12: Compute probability p(X1

t | Ck∗ ,Y1:N) via (14).
13: end while

is the opposite of the one in (1), making the emergence filter
the complement of the persistence filter.

Using the derivation from §IV-A, we can easily compute
the marginal posterior for the feature’s absence (Xt = 0) with
the mixture of emergence filters: pE(X0

T | Ck,Y1:N). The
posterior for the feature’s presence is obtained by taking the
complement: pE(X1

T | Ck,Y1:N) = 1 − pE(X0
T | Ck,Y1:N).

To ease notation, we will drop the “E” superscript. Therefore,
to compute p(X0

T | Ck,Y1:N), the equations for the likelihood
(4), and lower partial sum (11) must be updated as:

p(Y1:N | tN) =

N∏
i=1

P
yti

F (1− PF)
1−yti (16)

L(Y1:N | Ck) = P
1−ytN

M (1− PM)ytN (L(Y1:N−1 | Ck)

+ p(Y1:N−1 | tN−1)BN), (17)

where BN = FTE
k
(tN) − FTE

k
(tN−1) and FTE

k
is the CDF

of the kth mixture component of the emergence model. The
conditional evidence, p(Y1:N | Ck), is recovered by plugging
FTE

k
and (16), (17) into (6). These equations can be incorpo-

rated into Alg. 1 alongside the cumulative density functions
FTE

k
and emergence mixture prior pE(C) to recursively

compute the Bayesian posterior of the emergence model.
The combination of the persistence and emergence mixture

models allows us to model both types of state transitions, and
operating with mixture models relaxes the assumption of a
single dynamical mode. However, we still need to integrate
both mixture models to produce a single, coherent estimate
for the persistence Xt, and do so in a manner that maintains
high-quality estimates in the presence of noisy or missing
observations. In the next section, we introduce a state machine
for performing this integration.

C. The Perpetua State Machine

The purpose of the state machine is to control inference on
Xt by switching between the persistence and emergence mod-
els based on the probability of their heaviest weighted com-
ponent. When a feature is first observed at time ta, the state
machine is initialized in the persistence state. This instantiates
a mixture of persistence filters for a given feature, which starts
updating its belief given observations. While in the persistence
state, only the persistence mixture is used to estimate Xt. If
the probability p(X1

t | Ck∗ ,Ya:b), of the persistence model
drops below a threshold δlow at time tb, Perpetua transitions to
the emergence state and instantiates a mixture of emergence
filters. The emergence model runs until pE(X1

t | Ck∗ ,Yb:c)
exceeds a threshold δhigh at time tc, at which point the state
machine transitions back to the persistence state.

Upon re-entry into emergence or persistence states, the
respective model is reset, and prior mixture weights updated as

pnew(C) = ϵp(C) + (1− ϵ)p(C | Yp:q), ϵ ∈ [0, 1], (18)

with Yp:q denoting the observations taken while the mixture
was last active, p(C) the initial mixture weights, and pnew(C)
the updated weights used to initialize the model after a reset.

The motivation for (18) is two-fold. First, every reset
destroys information from previous observations. To alleviate
this loss of information, we re-use the posterior weights of
the previous model during initialization. Second, incorporating
p(C) into (18) prevents mode collapse while maintaining the
ability to quickly adapt to new modes in the data (see Fig. 2).

Each time a new observation is made, we must assess
whether the state of Perpetua has changed between the previ-
ous time ti−1 and the current time ti. To do this, we determine
the state change by monitoring the probability of the compo-
nent with the largest posterior weight of the persistence and
emergence mixtures from ti−1 to ti. During this “simulation”,
Perpetua can switch between the emergence and persistence
states multiple times, depending on the temporal distance
between ti−1 and ti, as illustrated in Fig. 2.

Perpetua not only predicts when a feature will disappear
or reappear, but also tracks and predicts the state of features
with multiple potential dynamics. By combining components
from the emergence and persistence models, we can estimate
multiple hypotheses by pairing different mixture components.
This work uses the heaviest weighted component of each mix-
ture model to improve persistence estimates. Fig. 1 illustrates
how Perpetua estimates the persistence of a feature and all
the possible outcomes that can be obtained by combining the
mixture components of the persistence and emergence models.

D. Parameter Learning

One of the strengths of Perpetua is its ability to estimate
the parameters of the distributions over TE/T and C from
noisy data. To simplify notation, we will represent C as
a one-hot vector with K binary random variables C =
[C1, C2, . . . , CK]T instead of C ∈ {1, 2, . . . ,K}. The element
Ck = 1 if and only if the result belongs to class k, and zero
otherwise. Without loss of generality, we will demonstrate our

derivations for the persistence model but the same steps can
be followed to obtain the learning equations of the emergence
model. It is worth noting that Dang et al. [23] mentioned
performing parameter learning over the parameters of T , but
we were unable to find details on its derivation.

Mixture of Exponential Priors. Assume pTk
is an ex-

ponential distribution: pTk
(T | Ck = 1) ≜ λk exp (−λkT).

Since the mixture of persistence filters contains two hidden
variables (C and T), we use the expectation-maximization
algorithm [25] to estimate the parameters Θ ≜ {(λk, πk)}Kk=1.

Given an observation sequence Y1:S with S >> N , where
a feature may transition multiple times between presence and
absence, we assume that these transition times are identifiable.
Therefore, we partition our data into M disjoint sets of the
form Y ≜ {YNj :NLast

j
}Mj=1, where Nj is the index of the

first observation in the jth set, NLast
j the index of the last

observation, and N1 = 1. Denoting T = {Tj}Mj=1 and C =

{cjk}M,K
j=1,k=1, the complete-data likelihood can be written as

p(Y,T , C; Θ) =

M∏
j=1

p(YNj :NLast
j
| Tj)p(Tj | Cj)p(Cj), (19)

with p(YNj :NLast
j
| Tj) defined by (3), p(Cj) ≜

∏K
k=1 π

cjk
k ,

and p(Tj | Cj) =
∏K

k=1[λk exp (−λkTj)]cjk . Taking the
logarithm of (19) and then the expectation with respect
to q[u+1](T , C) ≜ p(T , C | Y; Θ[u]), where u is the
current EM iteration, gives the maximization objective:
L(q,Θ) ≜ Eq[log p(Y, T , C; Θ)], defined as

L(q,Θ) ∝
M∑
j=1

K∑
k=1

[
Eq[cjk] (log λk + log πk)− λkEq[cjkTj]

]
,

(20)
where we dropped the terms that do not depend on Θ.

E-Step: In this step, we fix the parameters Θ[u] and compute
the distribution q[u+1]. Although q can be intractable we show
it allows for a closed-form solution. From the definition of
q[u+1](Tj , cjk) ≜ p(Tj , cjk | YNj :NLast

j
), we have

q[u+1](Tj , cjk) =
p(YNj :NLast

j
| Tj)p(Tj | cjk)p(cjk)∫∞

0

∑K
l=1 p(YNj :NLast

j
|τ)p(τ |cjl)p(cjl)dτ

,

(21)

q[u+1](cjk) = p(cjk | YNj :NLast
j

). (22)

Note that (22) are the posterior weights derived in §IV-A.
We define ϕ

[u+1]
jk ≜ Eq[cjk] = q[u+1](cjk = 1), and

ψ
[u+1]
jk ≜ Eq[cjkTj]. Hereafter, we omit the u superscript

to improve readability. By using the same decomposition as
in (5), and subtracting the observation time, tNLast

j−1
, to all

t ∈ {tNj
, . . . tLast

Nj
} in the jth set, we can compute ψjk as

ψjk =
p(cjk = 1)

p(YNj :NLast
j

)

∑
i

p(YNj :NLast
j
| ti)

∫ ti+1

ti

p(τ | cjk = 1)τdτ,

(23)
with i ∈ {0} ∪ {Nj , . . . , N

Last
j } and tNLast

0
=0. Following (5),

we set tNLast
j +1 =∞. For an exponential distribution, it can be

shown that ρijk ≜
∫ ti+1

ti
p(τ | cjk = 1)τdτ (with j denoting

the observation set) has the closed-form

ρijk = (ti +
1

λk
) exp(−λkti)− (ti+1 +

1

λk
) exp (−λkti+1).

M-Step: In this step, we fix the variational distribution
q[u+1] and optimize the parameters Θ[u] by maximizing the
objective in (20). This leads to the parameters updates

λ
[u+1]
k =

∑M
j=1 ϕjk∑M
j=1 ψjk

and π
[u+1]
k =

∑M
j=1 ϕjk∑M

j=1

∑K
l=1 ϕjl

. (24)

Therefore, to optimize Θ[u], we first perform the E-step
using (22) and (23) while keeping the parameters fixed. Then,
with q[u+1] updated, we optimize Θ[u+1] using (24). This
process is repeated for U iterations or until convergence1.

a) Model Selection: To determine the optimal number
of components while balancing model complexity, we use the
Akaike information criterion (AIC) [26]:

AIC = 2p− 2 ln(L̂), (25)

with L̂ ≜ pBest(Y1:S) denoting the highest evidence achieved
by the model, and p the number of model parameters. The AIC
balances goodness of fit and model simplicity by penalizing
excessive parameters, helping us to prevent models that overfit
the train set.

V. RESULTS

We demonstrate that our method, Perpetua, exhibits im-
proved adaptation capabilities compared to baselines while
maintaining predictive performance comparable to methods
specifically designed to predict persistence. Evaluation is per-
formed in one simulated and one real-world environment with
two datasets. We evaluate our method with three metrics: the
mean absolute error MAE(f, g) = 1

(t1−t0)

∫ t1
t0
|f(t)− g(t)| dt,

where f is the persistence estimate and g the ground truth;
balanced accuracy B-Acc = 1

2

(
TP

TP+FN + TN
TN+FP

)
, which ac-

counts for class imbalance by equally weighting true positives
and true negatives; and F1 score F1 = 2TP

2TP+FP+FN , to evaluate
prediction reliability by balancing precision and recall. Here,
TP, FP, TN and FN denote true/false positives, and true/false
negatives, respectively. We threshold persistence estimates at
0.5 to compute B-Acc and F1 score.

Throughout evaluation, we use the following four baselines:
• FreMen [5]. Following the authors, we fit the model

using 1000 Fourier coefficients but determine the optimal
number for prediction via a held-out validation set. The
model is periodically re-fit in all experiments.

• ARMA [9], [22]. Following the authors’ procedure, we
determine the model order by minimizing the AIC. Since
the method was not available online, we implemented it
ourselves. The model is also periodically re-fit.

• PF [10]. We extend the persistence filter with our mixture
formulation, using a mixture of exponential distributions.

1We present the derivation of the learning equations for a mixture model
with log-normal priors here https://montrealrobotics.ca/perpetua.

−10 −5 0 5 10

X (m)

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

Y
(m

)

ID: 1 ID: 2

ID: 3

ID: 4ID: 5ID: 6

ID: 7

ID: 8

Present Absent

−10 −5 0 5 10

X (m)

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

Y
(m

)

ID: 1 ID: 2

ID: 3

ID: 4ID: 5ID: 6

ID: 7

ID: 8

Present Absent

Fig. 3: Robot collecting data in the simulated room. (left) train; (right) test.

The model parameters are learned from data following
the procedure outlined in §IV-D.

• PF LSTE [23]. The persistence filter with long short-
term exponential memory. For consistency, we extend this
model analogously to the standard PF. Since no imple-
mentation was available, we implemented it ourselves.

We set δlow = 0.05, δhigh = 0.95 and ϵ = 0.1 for all
experiments. Perpetua is evaluated using two mixture distribu-
tions: exponential (Exp) and log-normal (Log-N). We use the
ruptures library [27] during training to detect change points
in the data (see §IV-D). The number of mixture components is
determined by computing the AIC (25) with k ∈ {1, . . . , 5}.
We train our models for up to 250 iterations with uninformed
initialization. For our method and persistence filter-based
baselines, PM and PF are set based on dataset statistics.

A. Simulation in Room Environment

The first evaluation, conducted in simulation, compares the
ability of Perpetua and the baselines to estimate persistence.
In this experiment, a robot navigates a room composed of
eight landmarks where four are static and four are semi-
static (see Fig. 3). All semi-static landmarks have different
appearance and disappearance times, ranging from 1min to
20min, sampled from a mixture of log-normal distributions.
Landmarks can have up to three distinct appearance and
disappearance times.

During data collection, the robot navigates counter-
clockwise for 12 hours, while during testing the robot moves
clockwise for 3 hours. To avoid measuring at regular intervals,
the robot’s speed is varied between 0.5m

s and 2.5m
s every five

minutes. Both training and test sets have observation noise
PM = PF = 0.1. Ground-truth is computed every 0.5 seconds,
including intervals where features are not being observed.

Since all methods based on the persistence filter can
leverage noisy test-time observations, we use the following
evaluation procedure: Given a time t in the test set, we allow
the model to process all data up until t and then query the
model to estimate persistence at time t + ∆t. We call ∆t
the prediction time. For methods requiring re-fitting, such as
FreMen and ARMA, we follow the same procedure but re-fit
the model after consuming data up to time t. While in some
cases re-fitting may not be possible in real-time, we chose this
approach to ensure a fair comparison.

https://montrealrobotics.ca/perpetua

Fig. 4: Prediction (a-c) and data sparsity ablation (d-f) in the simulated room (a,d) and parking lot datasets, UFPR04: (b,e), UFPR05: (c,f). The top row
shows the balanced accuracy of all methods when predicting feature persistence for a prediction time (∆t) in the future. The bottom row presents an ablation
study on data sparsity, evaluating filter-based methods when only a random subset of the noisy test data is available. These results highlight the robustness of
filtering methods, and Perpetua in particular, to limited data. The best predictive versions of FreMen and ARMA are included for reference.

TABLE I: Results in Room Environment. All metrics are averaged over five
random seeds. Shaded rows show ground-truth-informed Perpetua.

Method MAE ↓ B-Acc ↑ F1 ↑

FreMen [5] 0.244± 0.015 0.534± 0.027 0.700± 0.055

ARMA [9] 0.232± 0.003 0.537± 0.006 0.691± 0.012

PF [10] 0.125± 0.007 0.519± 0.005 0.569± 0.016

PF LSTE [23] 0.110± 0.002 0.614± 0.004 0.806± 0.007

Ours (Exp) 0.015± 0.001 0.737± 0.002 0.981± 0.003

Ours (Log-N) 0.010± 0.001 0.738± 0.003 0.983± 0.004

Ours GT (Exp) 0.015± 0.001 0.737± 0.002 0.981± 0.003

Ours GT (Log-N) 0.011± 0.001 0.736± 0.001 0.980± 0.002

Table I (see also Fig. 4 (a)) presents the results for all
methods in the simulated room experiment. The results pre-
sented correspond to prediction times ∆t ∈ [0, 3hr] for which
each model achieved the highest B-Acc. Note that maximizing
B-Acc may not simultaneously achieve the lowest MAE or
highest F1. In general, Perpetua outperforms the baselines
across all metrics. The two bottom rows of Table I show Per-
petua’s performance when given the ground truth parameters
governing the dynamics, demonstrating that the parameters
Perpetua learns in the uninformed case are highly accurate.

We also evaluate the robustness of the filter-based methods
to data sparsity. Here, persistence estimators receive only a
random subset of noisy observations from the test set, and
prediction time ∆t = 0. As shown in Fig. 4 (d), Perpetua out-
performs the baselines using only 5% of the test observations,
and starts to plateau at 20%. We present the best FreMen and
ARMA models from the previous experiment for reference.

B. Parking Lot Dataset

This experiment tests persistence estimators when learning
model parameters from real-world data where priors are un-
available. For this, we use the parking lot dataset from Almeida
et al. [28], which consists of 12,427 images of parking lots

captured under varying environmental conditions. These im-
ages were taken in the parking lots of the Federal University of
Parana (UFPR), with observations recorded every five minutes
for more than 30 days. For this evaluation, we focus on the
UFPR04 and UFPR05 subsets, which represent different views
of the same parking lot captured from the fourth and fifth floors
of the UFPR building. The UFPR04 set contains 28 parking
spaces (tracked features), while UFPR05 has 45.

Fig. 5: YOLOv11 applied to UFPR04 (left) and UFPR05 (right).

To match real-world conditions, we augment the dataset
using an off-the-shelf object detector, YOLOv11 [29], to
obtain observations. Example detections are shown in Fig. 5,
where some vehicles are not detected, introducing noise into
the observations. YOLOv11 achieves an accuracy of 85.5%
on UFPR04 and 79.9% on UFPR05. We follow the same
evaluation procedure described in §V-A and use the last 30%
of data as the test set.

The results, shown in Fig. 4 (b-c), demonstrate that Perpetua
outperforms all methods in the UFPR04 set across all predic-
tion times. In the UFPR05 set, Perpetua (Exp) outperforms
the baselines for prediction time ∆t ≤ 10hr, beyond which
fully predictive methods such as FreMen and ARMA surpass
all filter-based methods, with Perpetua remaining the most ac-
curate filter-based approach. These results suggest that fitting
a mixture of exponential distributions may be easier than a
mixture of log-normals. Table II presents the most accurate
models for each method over all prediction times.

In Fig. 4 (e-f), we present the results of the data sparsity
ablation. Perpetua (Exp) outperforms the baselines using only

TABLE II: Results in Parking Lot dataset. UFPR04 has 28 parking spaces
(tracked features) and UFPR05 contains 45.

Method
UFPR04 UFPR05

MAE ↓ B-Acc ↑ F1 ↑ MAE ↓ B-Acc ↑ F1 ↑

FreMen [5] 0.389 0.592 0.470 0.388 0.602 0.560
ARMA [9] 0.409 0.613 0.451 0.396 0.636 0.536
PF [10] 0.539 0.512 0.067 0.421 0.702 0.528
PF LSTE [23] 0.208 0.813 0.733 0.285 0.792 0.738
Ours (Exp) 0.201 0.823 0.745 0.359 0.798 0.785
Ours (Log-N) 0.228 0.811 0.735 0.359 0.777 0.794

10% of noisy test-time data. Although PF LSTE is similarly
robust to data sparsity, its overall prediction performance
(MAE, B-Acc, F1) is weaker than Perpetua. A snapshot of the
persistence estimates in the UFPR04 set is shown in Fig. 6.

Fig. 6: Example results obtained by our method and baselines when estimating
the persistence of a feature in the UFPR04 data set. Here, we threshold the
persistence estimates of all methods at 0.5.

Implementation and hardware details. We implement Per-
petua using JAX [30], on a Ryzen 1950X CPU with 32GB
of RAM. Training a mixture model with exponential priors
on 12,500 data points takes 0.058 seconds per iteration, and
0.170 seconds for the log-normal prior.

VI. CONCLUSION

This paper presents Perpetua, a method for estimating fea-
ture persistence that models and predicts semi-static dynamics
with robust online adaptation capabilities. We show Perpetua’s
superior adaptation and predictive capabilities on both real and
simulated data, and present additional results on robustness
to missing observations. In the future, we plan to explore
updating the persistence priors of our mixture models dynam-
ically using large vision-language models. Finally, we intend
to further evaluate Perpetua in complex sequential reasoning
domains within long-horizon planning tasks.

REFERENCES

[1] A. Adkins, T. Chen, and J. Biswas, “Probabilistic object maps for long-
term robot localization,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots and
Syst., 2022.

[2] Z. Hashemifar and K. Dantu, “Practical persistence reasoning in visual
slam,” in Proc. IEEE Int. Conf. Robot. and Automation, 2020.

[3] L. Schmid, M. Abate, Y. Chang, and L. Carlone, “Khronos: A unified
approach for spatio-temporal metric-semantic slam in dynamic environ-
ments,” in Proc. of Robotics: Science and Systems (RSS), 2024.

[4] S. Nashed and J. Biswas, “Curating long-term vector maps,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots and Syst., 2016.

[5] T. Krajnı́k, J. P. Fentanes, J. M. Santos, and T. Duckett, “Fremen:
Frequency map enhancement for long-term mobile robot autonomy in
changing environments,” IEEE Trans. on Robot., 2017.

[6] J. Qian, S. Zhou, N. J. Ren, V. Chatrath, and A. P. Schoellig, “Closing
the perception-action loop for semantically safe navigation in semi-static
environments,” in Proc. IEEE Int. Conf. Robot. and Automation, 2024.

[7] L. Nardi and C. Stachniss, “Long-term robot navigation in indoor
environments estimating patterns in traversability changes,” in Proc.
IEEE Int. Conf. Robot. and Automation, 2020.

[8] T. Krajnı́k et al., “Chronorobotics: Representing the structure of time
for service robots,” in Proceedings of the International Symposium on
Computer Science and Intelligent Control, 2021.

[9] L. Wang, W. Chen, and J. Wang, “Long-term localization with time
series map prediction for mobile robots in dynamic environments,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots and Syst., 2020.

[10] D. Rosen, J. Mason, and J. Leonard, “Towards lifelong feature-based
mapping in semi-static environments,” in Proc. IEEE Int. Conf. Robot.
and Automation, 2016.

[11] F. Nobre, C. Heckman, P. Ozog, R. W. Wolcott, and J. M. Walls, “Online
probabilistic change detection in feature-based maps,” in Proc. IEEE Int.
Conf. Robot. and Automation, 2018.

[12] P. Biber and T. Duckett, “Dynamic maps for long-term operation of
mobile service robots,” in Robotics: Science and Systems, 2005.

[13] C. Cadena et al., “Past, present, and future of simultaneous localization
and mapping: Toward the robust-perception age,” IEEE Trans. on Robot.,
2016.

[14] L. Schmid et al., “Panoptic multi-TSDFs: A flexible representation
for online multi-resolution volumetric mapping and long-term dynamic
scene consistency,” in Proc. IEEE Int. Conf. Robot. and Automation,
2022.

[15] J. Saarinen, H. Andreasson, and A. J. Lilienthal, “Independent markov
chain occupancy grid maps for representation of dynamic environment,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots and Syst., 2012.

[16] G. D. Tipaldi, D. Meyer-Delius, and W. Burgard, “Lifelong localiza-
tion in changing environments,” The International Journal of Robotics
Research, 2013.

[17] J. Fu, Y. Du, K. Singh, J. B. Tenenbaum, and J. J. Leonard, “NeuSE:
Neural SE(3)-equivariant embedding for consistent spatial understanding
with objects,” in Robotics: Science and Systems (RSS), 2023.

[18] S. Looper, J. Rodriguez-Puigvert, R. Siegwart, C. Cadena, and
L. Schmid, “3D VSG: Long-term semantic scene change prediction
through 3d variable scene graphs,” in Proc. IEEE Int. Conf. Robot. and
Automation, 2023.

[19] H. Thomas, J. Zhang, and T. D. Barfoot, “The foreseeable future: Self-
supervised learning to predict dynamic scenes for indoor navigation,”
IEEE Trans. on Robot., 2023.

[20] T. Krajnı́k et al., “Warped hypertime representations for long-term
autonomy of mobile robots,” IEEE Robot. and Automation Lett., 2019.

[21] V. Guizilini, R. Senanayake, and F. Ramos, “Dynamic hilbert maps:
Real-time occupancy predictions in changing environments,” in Proc.
IEEE Int. Conf. Robot. and Automation, 2019.

[22] Y. Wang, Y. Fan, J. Wang, and W. Chen, “Long-term navigation for
autonomous robots based on spatio-temporal map prediction,” Robotics
and Autonomous Systems, 2024.

[23] T. Deng, H. Xie, J. Wang, and W. Chen, “Long-term visual simultaneous
localization and mapping: Using a bayesian persistence filter-based
global map prediction,” IEEE Robotics & Automation Magazine, 2023.

[24] J. Ibrahim, M. H. Chen, and D. Sinha, Bayesian Survival Analysis.
Springer, 2005.

[25] K. P. Murphy, Probabilistic Machine Learning: An introduction. MIT
Press, 2022.

[26] H. Akaike, “A new look at the statistical model identification,” in
Selected Papers of Hirotugu Akaike. Springer, 1974.

[27] C. Truong, L. Oudre, and N. Vayatis, “Selective review of offline change
point detection methods,” Signal Processing, 2020.

[28] P. Almeida, L. S. Oliveira, E. Silva Jr, A. Britto Jr, and A. Koerich,
“Pklot – a robust dataset for parking lot classification,” Expert Systems
with Applications, 2015.

[29] G. Jocher and J. Qiu, “Ultralytics yolo11,” 2024. [Online]. Available:
https://github.com/ultralytics/ultralytics

[30] J. Bradbury et al., “JAX: composable transformations of Python+NumPy
programs,” 2018. [Online]. Available: http://github.com/jax-ml/jax

https://github.com/ultralytics/ultralytics
http://github.com/jax-ml/jax

	Introduction
	Related Work
	Background and Preliminaries
	Problem Definition
	The Persistence Filter

	Perpetua
	Mixture of Persistence Filters
	Mixture of Emergence Filters
	The Perpetua State Machine
	Parameter Learning

	Results
	Simulation in Room Environment
	Parking Lot Dataset

	Conclusion
	References

