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1 Overview

This document contains supplementary material for the paper “Perpetua: Multi-Hypothesis Persistence Modeling
for Semi-Static Environments”. It provides the learning equations for a mixture of log-normal priors and highlights
the changes needed to do training with the mixture of emergence filters.

2 Parameter Learning With a Mixture of Log-Normal Priors

We begin this section by revisiting the notation introduced in the learning section of the paper (§ IV-D). The goal
is to estimate the parameters of the distributions over TE/T and C from noisy data. To simplify notation, we
represent C as a one-hot vector with K binary random variables C = [C1, C2, . . . , CK ]T instead of C ∈ {1, 2, . . . ,K}.
The element Ck = 1 if and only if the result belongs to class k, and zero otherwise. Without loss of generality, we
demonstrate our derivations for the persistence model but the same steps can be followed to obtain the learning
equations of the emergence model.

Mixture of Log-Normal Priors. Assume pTk
is a log-normal distribution:

pTk
(T | Ck = 1) ≜

1

Tσk

√
2π

exp (− (lnT − µk)
2

2σ2
k

) (1)

since the mixture of persistence filters contains two hidden variables (C and T ), we use the expectation-maximization
algorithm Murphy [2022] to estimate the parameters Θ = {(µk, σk, πk)}Kk=1.

Given an observation sequence Y1:S with S >> N , where a feature may transition multiple times between presence
and absence, we assume that these transition times are identifiable. Therefore, we partition our data into M disjoint
sets of the form Y ≜ {YNj :NLast

j
}Mj=1, where Nj is the index of the first observation in the jth set, NLast

j the index

of the last observation, and N1 = 1. To ensure consistency in the estimator, we subtract the observation time tNLast
j−1

from all times t ∈ {tNj , . . . , t
Last
Nj

} in the jth set, where we define tNLast
0

= 01.

Denoting T = {Tj}Mj=1 and C = {cjk}M,K
j=1,k=1, the complete-data likelihood can be written as

p(Y,T , C; Θ) =

M∏
j=1

p(YNj :NLast
j

| Tj)p(Tj | Cj)p(Cj), (2)

where the distributions in (2) are

1This adjustment in the observation times is required irrespective of the choice of prior.
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p(YNj :NLast
j

| T ) =
∏
ti≤T

P
1−yti

M (1− PM )yti

∏
ti>T

P
yti

F (1− PF )
1−yti , (3)

p(Tj | Cj) =

K∏
k=1

[
1

Tσk

√
2π

exp

(
− (lnT − µk)

2

2σ2
k

)]cjk
, (4)

p(Cj) ≜
K∏

k=1

π
cjk
k , (5)

with (3) denoting the likelihood of the model, (4) a conditional prior over survival time T , and (5) a prior over
mixture components.

Taking the logarithm of (2) and then the expectation with respect to q[u+1](T , C) ≜ p(T , C | Y; Θ[u]), where u is
the current EM iteration, gives the maximization objective: the expected complete-data log-likelihood, defined as

L(q,Θ) ≜ Eq[log p(Y, T , C; Θ)] ∝
M∑
j=1

K∑
k=1

(
Eq[cjk] (log πk − log σk)− Eq[cjk log Tj ]− Eq

[
cjk(lnTj − µk)

2

2σ2
k

])
, (6)

where we dropped the terms that do not depend on Θ.
E-Step: In this step, we fix the parameters Θ[u] and compute the distribution q[u+1]. Although q can be

intractable, we show that it allows for a closed-form solution. From the definition of q[u+1](Tj , cjk) ≜ p(Tj , cjk |
YNj :NLast

j
), we have

q[u+1](Tj , cjk) = p(Tj , cjk | YNj :NLast
j

)

=
p(YNj :NLast

j
| Tj)p(Tj | cjk)p(cjk)∫∞

0

∑K
l=1 p(YNj :NLast

j
|τ)p(τ |cjl)p(cjl)dτ

, (7)

q[u+1](cjk) = p(cjk | YNj :NLast
j

). (8)

Note that (8) correspond to the posterior weights derived in § IV-A. We define the expectation ϕ
[u+1]
jk ≜ Eq[cjk] =

q[u+1](cjk = 1). Since this expectation is exactly the posterior weights, it can be computed by following the procedure
outlined in § IV-A.

By using the same decomposition used to incrementally compute the evidence (see § III-B and (5) in the paper),
the other two expectations can be computed as:

νjk ≜ Eq[cjk lnTj ] =
p(cjk = 1)

p(YNj :NLast
j

)

∑
i

p(YNj−1:Nj
| ti)

∫ ti+1

ti

p(τ | cjk = 1) ln τ dτ, (9)

κjk ≜ Eq[cjk(lnTj − µ2
k)] =

p(cjk = 1)

p(YNj :NLast
j

)

∑
i

p(YNj−1:Nj
| ti)

∫ ti+1

ti

p(τ | cjk = 1)(ln τ − µk)
2 dτ, (10)

with i ∈ {0}∪{Nj , . . . , N
Last
j }. The u superscript is omitted for clarity. Additionally, we set t0 = 0 and tNLast

j +1 = ∞
(see (5) in the paper). The evidence, p(YNj :NLast

j
), is computed alongside the posterior weights, as outlined in §IV-A.

For a log-normal distribution, it can be shown that the integrals in (9) and (10) admit the following closed-form∫ ti+1

ti

p(τ | cjk = 1) ln τ dτ =
1√
2π

[
σ
[u]
k exp(−aik)− σ

[u]
k exp(−bik) + µ

[u]
k

√
π

2

(
erf(

√
bik)− erf(

√
aik)

)]
,∫ ti+1

ti

p(τ | cjk = 1)(ln τ − µk)
2 dτ = −2µ

[u+1]
k νjk+

(
(µ

[u+1]
k )2

2
+
(µ

[u]
k )2

2
+
(σ

[u]
k )2

2
√
π
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erf(

√
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√
(aik)

)
−
√

2

π
µ
[u]
k σ
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k (exp (−bik)− exp (−aik))

+
(σ
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π

(√
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√
bik exp (−bik)
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where erf(z) ≜ 2√
π

∫ z

0
e−t2dt is the error function, and the auxiliary variables aik =

(ln ti−µ
[u]
k )2

2(σ
[u]
k )2

and bik =
(ln ti+1−µ

[u]
k )2

2(σ
[u]
k )2

are introduced to simplify the notation. Note that µ
[u+1]
k is the solution obtained in the M-step. Thus, computing

the variance requires first optimizing the mean (this is analogous to the standard MLE for a standard normal
distribution).

M-Step: In this step, we fix the variational distribution q[u+1] and optimize the parameters Θ[u] by maximizing
the objective in (6). This leads to the parameters updates

µ
[u+1]
k =

∑M
j=1 νjk∑M
j=1 ϕjk

, σ
[u+1]
k =

√√√√∑M
j=1 κjk∑M
j=1 ϕjk

, and π
[u+1]
k =

∑M
j=1 ϕjk∑M

j=1

∑K
l=1 ϕjl

. (11)

Therefore, to optimize Θ[u], we first perform the E-step using (8), (9) and (10) while keeping the parameters fixed.
Then, with q[u+1] updated, we optimize Θ[u+1] using (11). This process is repeated for U iterations or until conver-
gence2.

3 Parameter Learning for a Mixture of Emergence Filters

The learning procedure for mixtures of exponential and log-normal distributions can be directly applied to estimate
the parameters of the emergence filter. More generally, this holds for any prior distribution over T . If we want to
estimate the parameters of the distribution over TE and C, we need to do the two following modifications to the
procedure presented in §2 and § IV-D in the paper:

1. The likelihood (3) has to be updated according to the mixture of emergence filters’ model (see § IV-B)

p(YNj :NLast
j

| TE) =
∏

ti≤TE

P
yti

F (1− PF )
1−yti

∏
ti>TE

P
1−yti

M (1− PM )yti (12)

2. To compute the expectation ϕ
[u+1]
jk and the evidence p(YNj :NLast

j
), we must use the filtering equations for the

mixture of emergence filters (§ IV-B) instead of those for the mixture of persistence filters (§ IV-A).

Therefore, with these two modifications, we can now compute the parameters for the mixture of emergence filters.
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2The learning code for a mixture of exponential and log-normal distributions can be found here: https://montrealrobotics.ca/

perpetua.
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