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Abstract
Deep neural networks are the de-facto standard
for object detection in autonomous driving ap-
plications. However, neural networks cannot be
blindly trusted even within the training data dis-
tribution, let alone outside it. This has paved
way for several probabilistic object detection tech-
niques that measure uncertainty in the outputs of
an object detector. Through this position paper,
we serve three main purposes. First, we briefly
sketch the landscape of current methods for prob-
abilistic object detecion. Second, we present the
main shortcomings of these approaches. Finally,
we present promising avenues for future research,
and proof-of-concept results where applicable.
Through this effort, we hope to bring the com-
munity one step closer to performing accurate,
reliable, and consistent probabilistic object detec-
tion. A project page for this work can be found at
montrealrobotics.ca/probod

1. Introduction
Detecting and localizing traffic participants and other ob-
jects is of paramount importance in autonomous driving
scenarios. While deep neural networks (Krizhevsky et al.,
2012) have been the de facto choice for object detection,
their predictions are uninterpretable and unreliable outside
the operating range (data distribution).

Reliably measuring the predictive uncertainty of blackbox
object detection models benefits a range of downstream au-
tonomous driving tasks, ranging from state estimation, to
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Québec AI Institute, Montreal, Canada 2DENSO CORP.. Corre-
spondence to: Dhaivat Bhatt <bhattdha@mila.quebec>, Dishank
Bansal <bansaldi@mila.quebec>.

Workshop on AI for Autonomous Driving, the 37 th International
Conference on Machine Learning, Vienna, Austria, 2020. Copy-
right 2020 by the author(s).

planning, to control. The operative word here is reliable:
softmax-based classification models have been shown to
give highly brittle and overconfident predictions (Guo et al.,
2017; Moosavi-Dezfooli et al., 2016; Carlini & Wagner,
2017; Gal, 2016). This has seen bayesian deep learning tech-
niques garner plenty of attention (Hall et al., 2018; Harakeh
et al., 2019; Malinin & Gales, 2018; Lakshminarayanan
et al., 2017). In this position paper, we analyze the strengths
and weaknesses of, and opportunities presented by, prob-
abilistic object detection techniques. We highlight open
issues that need the attention of the community at large. We
succinctly summarize current art and enlist critical open
problems to enable widespread adaptation of probabilistic
object detectors in figure 1.

Of central importance in the discussion of a probabilistic
object detection framework is the various types/sources of
uncertainties in the system. Drawing from previous stud-
ies (Kendall & Gal, 2017; Malinin & Gales, 2018; Hall et al.,
2018), the types of uncertainties associated with an object
detection framework are the following.

1. Data uncertainty (aleatoric uncertainty) is the noise in
the data presented to the system. It is “irreducible” (can
only be estimated), and corresponds to the underlying
entropy in the data distribution.

2. Model uncertainty (epistemic uncertainty) is the un-
certainty resulting due to the model structure and pa-
rameters.

3. Distributional uncertainty arises when models are
presented with data outside of the training distribution.

The data and model uncertainties can further be decomposed
into spatial and semantic uncertainties, concerning the un-
certainties in the location and label of objects respectively.

We begin by providing a background and describing the
strengths of current probabilistic deep learning methods
and how they are employed for object detection. We cri-
tique the major weaknesses of these methods, and thereafter
analyze the research opportunities that open up.

We communicate the following key conclusions.

• Uncertainty estimates need to be calibrated to down-
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stream tasks; not necessarily to ground-truth data.
• The concept of a background class severely impacts

the applicability of typical distributional uncertainty
estimation methods designed for image classification
and segmentation.

• Current metrics evaluate the deterministic behaviour
(accuracy) of probabilistic object detectors, but fail to
characterize their probabilistic nature.

2. Strengths
Today, there exist several approaches to estimating the pre-
dictive uncertainty of a deep neural network. In this section,
we extensively survey the strengths existing approaches to
probabilistic object detection techniques, categorized by the
types/source of uncertainty measured (cf. Fig. 1 (left)).

Spatial uncertainty indicates the reliability of object local-
ization, which is crucial for downstream tasks such as plan-
ning, motion prediction, tracking and collision avoidance.
There exist different approaches for estimating uncertainty
in object detection such as (He et al., 2019; Harakeh et al.,
2019; Choi et al., 2019; Kraus & Dietmayer, 2019; Yoo et al.,
2019; Meyer et al., 2019). To estimate the model uncertainty
in bounding box predictions, (Harakeh et al., 2019) learn a
stochastic detection model by employing dropout(Srivastava
et al., 2014) at test time, as a Monte-Carlo estimator of vari-
ance. As argued in (Gal & Ghahramani, 2015), a neural
network with dropout layers can be interpreted as encoding
in its parameters a posterior over multiple hypotheses that
minimize the training objective. Employing Monte-Carlo
dropout at test time is analogous to sampling multiple pre-
dictions from this posterior, therefore the variance in these
predictions is a measure of model uncertainty. Most ap-
proaches (He et al., 2019; Choi et al., 2019; Harakeh et al.,
2019) leverage a loss attenuation mechanism to measure
the data uncertainty in bounding box predictions. The loss
attenuation mechanism involves simultaneously regressing
to the mean and variance of a random variable, enabling
the neural network to trade off accuracy and confidence of
predictions. It learns to output variances corresponding to
bounding box predictions as a measure of aleatoric uncer-
tainty. It is derived as negative loss likelihood of gaussian:

L =
(x− µ)2

σ2
+ log σ2 (1)

Semantic uncertainty is particularly useful in object detec-
tion, as downstream modules (trajectory forecasting, plan-
ning, obstacle avoidance) are often conditioned on a proba-
bilistic labeling of the environment. In probabilistic object
detection (Harakeh et al., 2019), semantic uncertainty is
exclusively construed as model uncertainty.

2The references in red color are not object detection approaches,
but methods to tackle OOD inputs in classification setup

Distributional uncertainty, to the best of our knowledge, has
not been explored in the context of object detection. Two
close sets of approaches exist, however.

1. Transductive learning approaches (Rahman et al.,
2019b; Bansal et al., 2018; Zhu et al., 2019; Rahman
et al., 2018; Rahman et al., 2019a; Gupta et al., 2020)
detect unseen objects (zero-shot) by exploiting aux-
iliary information, such as the relationship between
an unseen (test) object to a known (training) class, or
pretrained word embeddings.

2. Few-Shot Object Detection methods (Wang et al., 2020;
Kang et al., 2019; Yan et al., 2019; Karlinsky et al.,
2019; Fan et al., 2019) employ meta-learning to local-
ize novel objects, given a limited number of annotated
examples.

BayesOD (Harakeh et al., 2019) is—perhaps—the only full-
fledged probabilistic object detector (estimates both data and
model uncertainty in the spatial and semantic components).
It uses a RetiaNet (Lin et al., 2017b) backbone, and is trained
with loss attenuation and MC-dropout.

3. Weaknesses
While probabilistic object detection has seen commendable
strides over the last few years, current approaches have
a long way to go before they are reliable enough to be
deployed in real-world autonomous driving systems.

3.1. In-distribution uncertainty estimation

Sampling-based methods incur runtime overhead: To esti-
mate the data uncertainty for in-distribution samples, meth-
ods such as MC-dropout (Kendall & Gal, 2017; Harakeh
et al., 2019) have been proposed. These methods incur a
high computational overhead as they require multiple for-
ward passes at inference time. Non-stochastic methods (Pos-
tels et al., 2019; Choi et al., 2017) are yet to be evaluated in
an object detection setup.

Lack of “calibration”: Another limitation of most current
methods is the lack of calibrated uncertainty estimates. That
is, uncertainty estimates for each sample span an arbitrary,
unknown scale, that are not commensurate with each other.
While some approaches (Feng et al., 2019; Küppers et al.,
2020) have studied this problem in-depth, they either require
lidar data (Feng et al., 2019) or only estimate uncertainty in
pixel space (Küppers et al., 2020). Pixel-space uncertainty is
not directly usable by downstream modules operating in 3D.
Feng et al. (Feng et al., 2019) show that the predicted vari-
ance may under-or-over-estimate the empirical distribution
in the absence of calibration.
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Figure 1. Left: A taxonomy of probabilistic object detection approaches2. Right: A summary of our analysis.

3.2. Out-of-distribution (OOD) uncertainty estimation

Predominant architectures for object detection include:
single-stage methods (Szegedy et al., 2013; Sermanet et al.,
2013; Redmon et al., 2016; Redmon & Farhadi, 2017; Liu
et al., 2016) and two-stage methods (Girshick et al., 2015;
He et al., 2015; Girshick, 2015; Ren et al., 2015; Dai et al.,
2016; He et al., 2017; Li et al., 2017; Lin et al., 2017c;a).
Most of these use “anchor boxes” to handle variation in the
number, size, and position of objects in an image. Each
anchor box is classified as either an in-distribution class or
the background class.

So far, OOD detection methods (Hendrycks & Gimpel,
2016; Lakshminarayanan et al., 2017; Hein et al., 2019;
Liang et al., 2017; Guo et al., 2017; Hendrycks et al., 2018;
Mohseni et al.; Malinin & Gales, 2018; Sehwag et al., 2019)
have been designed exclusively for image classification. Ob-
ject detection methods, on the other hand, bear a different
design philosophy. The notion of a background class in
object detection obfuscates the distinction between novel
objects and the background class. While some zero- and
few-shot learning methods recognize novel objects in an
image, zero-shot methods can only recognize OOD objects
that are close to the training distribution (Rahman et al.,
2019b; Bansal et al., 2018; Zhu et al., 2019; Rahman et al.,
2018; Rahman et al., 2019a; Gupta et al., 2020), and few-
shot methods (Wang et al., 2020; Kang et al., 2019; Yan
et al., 2019; Karlinsky et al., 2019; Fan et al., 2019) re-
quire a handful of annotated samples for the OOD category
at test time. Both these assumptions are impractical in a
safety-critical application like autonomous driving.

3.3. Evaluation metrics

There is a lack of consensus on metrics to evaluate uncer-
tainty estimates. The community needs metrics that evaluate
“consistency” and “calibration”, in addition to “accuracy”.
Current metrics (Hall et al., 2018) also lack the ability to
evaluate OOD detections.

4. Opportunities
The above weaknesses open up several opportunities for
further research. We discuss two key avenues here.

4.1. Task-calibrated uncertainty estimates

Uncertainty estimates from a probabilistic object detector
need to be calibrated with the downstream task they are
employed in. Existing approaches (Feng et al., 2019) pro-
pose multiple techniques to calibrate uncertainty estimates
in image (pixel) space or world (3D) space. However, such
uncertainties often need to be transformed suitable to be em-
ployed in a downstream task. Such a transformation is often
nonlinear, lossy, and can lead to mischaracterization if the
estimated uncertainty is improperly handled. A meaningful
space to represent uncertainty, therefore, is in the action
space of the immediate downstream task of interest. For
example, in a driving system, if the role of object detection
uncertainty is to inform state estimation or trajectory fore-
casting modules, the uncertainty estimates must be grounded
in the input space of such modules. However, little research
has been carried out to this end. While loss-attenuation
based schemes demonstrate some correlation between the
predicted uncertainties and empirical errors, whether they
are consistent and meaningfully inform downstream tasks is
an open question. Also, for temporally correlated input, the
output maximum likelihood estimate and uncertainty should
be correlated and consistent.

As a proof of concept, we show that using the predicted
uncertainty in a loop within a Kalman Filter (KF) tracking
system improves the calibration error of these uncertainties.
We treat the predicted uncertainty as the measurement error
within the KF. This supports the hypothesis that grounding
the uncertainty with a task leads to more meaningful metrics.
Calibration error is defined as ||σ−e||1 where e is prediction
error x− µ.

Method Calibration Error

Without KF 0.625 px
With KF 0.551 px
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4.2. Opportunities in Out of distribution object
detection

In section 3, we observed that it is arduously challenging
to distinguish between the background class and a novel
object, owing to design decisions baked into modern object
detectors. We now formalize the definition of OOD for
object detection. There are two types of OOD objects in this
setup: seen OOD objects, unseen OOD objects. Seen OOD
objects are unannotated objects that are present in training
images; these are implicitly learned as background. Unseen
OOD objects are object that have never appeared in the train
dataset, and only encountered at test time.

We conducted an experiment to understand the adverse im-
pact of the background class for the “seen OOD objects”
case. In this experiment, we use a clustering based method
to classify OOD object. The overall objective in this method
is to view an intermediate representation of an object in
the trained model (input to softmax layer3) as residing on
a high-dimensional manifold, and then, assuming that in-
distribution samples should be “close” to each other on this
manifold (Verma et al., 2018). We employ class conditional
Gaussian clustering inspired from (Lee et al., 2018).

We train a model on x classes of the dataset and hold out
k classes. We treat these k classes as seen OOD objects.
We use the KITTI Object dataset (Geiger et al., 2012) with
x = 4 and k = 3. We follow the procedure below,

1. Train the probabilistic detector to convergence
2. Get embeddings of in-distribution objects and back-

ground.
3. For each class c calculate a class-conditional Gaussian

distribution (µc,Σc) based on the cluster embeddings
4. For a test datum x, calculate the closest class cluster in

the embedding space, where “closeness” is determined
by Mahalanobis distance:

M(x) = max
c

−(f(x) − µx)Σ−1
c (f(x) − µx) (2)

5. If the closest class is above a threshold Mahalanobis distance,
then the input is designated as out of distribution since it does
not correspond well to any of the known classes.

We treat an acceptable accuracy of the in-distribution sam-
ples as the control variable. This control variable automat-
ically presents a threshold on the Mahalanobis distance.
Following the procedure above, for each class, we obtain
several data points in the validation set and compute a Gaus-
sian mean and covariance using the training data. We then
use the validation data to find the Mahalanobis distance
threshold that will achieve the acceptable accuracy, across
all object classes. Next, using this threshold, we determine
whether a new embedding belongs to any of these classes

3Note that getting intermediate representations is possible in
2-stage object detection only, we get intermediate representation
from stage-2 of the Faster RCNN

or not. If it doesn’t we label it OOD. We perform this ex-
periment for the two problem setups (the “easy” version
and the “hard” version), for various acceptable accuracy
thresholds, and then we calculate accuracy of OOD classes
explicitly. To effectively understand role of the background
class, we consider the following two setups. We follow pro-
cedure outlined in 4.2 for both the setups (with and without
background class). That is, in one setup, we allow OOD
embeddings to be classified as background, and in other
setup, we do not. Resuts are shown in Fig 2.

This demonstrates that redesigning object detectors without
allowing a catch-all “background” class can boost OOD
detection performance.

Figure 2. Background class hampers OOD performance as the
cross-entropy objective forces an OOD object to be very confi-
dently classified as background. Removing the notion of a back-
ground class boosts performance. Our results are also corroborated
by (Denouden, 2020).

5. Conclusion
The highest level of safety guarantees are a necessity when
deploying any system that can endanger human life. Au-
tonomous vehicles are no exception. Probabilistic detectors
are substantially more informative compared to their de-
terministic counterparts, and the measures of uncertainty
they offer can be used to develop reliable and safe detection
schemes. By summarizing the strengths and weaknesses
of current art in probabilistic object detection, and by high-
lighting the most critical issues for further research, we hope
to drive community efforts towards the right directions that
will move us one step closer to safer autonomous vehicles.
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